In this work we propose a method to study a weak exponential stability for time-varying differential inclusions applying an averaging procedure to a first approximation. Namely, we show that a weak exponential stability of the averaged first approximation to the differential inclusion implies the weak exponential stability of the original time-varying inclusion. The result is illustrated by an example. 相似文献
Zusammenfassung Es werden Methoden zur Bestimmung der Hauptelemente in den Mutterlaugen bei der Seesalzgewinnung beschrieben. Die Kationen und Anionen werden durch Ionenaustausch in einer Kolonne mit Wofatit KPS-200 in H-Form getrennt. Im Durchlauf werden Chlorid und Sulfat als Summe und Chlorid allein bestimmt. Sulfat wird als Differenz berechnet. Calcium, Magnesium und Eisen bestimmt man komplexometrisch. Die Summe Kalium und Natrium bestimmt man komplexometrisch als Magnesium nach lonenaustausch in einer Wofatit KPS-200-Säule in Mg2+-Form. Natrium wird als Natriumzinkuranylacetat bestimmt, und Kalium ergibt sich aus der Differenz. 相似文献
In recent years, operando/in situ X-ray absorption spectroscopy (XAS) has become an important tool in the electrocatalysis community. However, the high catalyst loadings often required to acquire XA-spectra with a satisfactory signal-to-noise ratio frequently imply the use of thick catalyst layers (CLs) with large ion- and mass-transport limitations. To shed light on the impact of this variable on the spectro-electrochemical results, in this study we investigate Pd-hydride formation in carbon-supported Pd-nanoparticles (Pd/C) and an unsupported Pd-aerogel with similar Pd surface areas but drastically different morphologies and electrode packing densities. Our in situ XAS and rotating disk electrode (RDE) measurements with different loadings unveil that the CL-thickness largely determines the hydride formation trends inferred from spectro-electrochemical experiments, therewith calling for the minimization of the CL-thickness in such experiments and the use of complementary thin-film control measurements. 相似文献
The template synthesis of ethylenediamine ( 1 ) with 2-acetylcyclopentanone ( 2 ) and [Cu(OAc)2 · H2O] ( 5 ) produced [Cu(1-(2-cC5H6(O))C(Me)NCH2)2)] ( 6 ) in 82 % yield. Reaction of 5 with bis(benzoylacetone)diethylenetriamine ( 7 , = L H)[1] gave [Cu(μ-OAc)( L )(H2O)]2 ( 8 ). The solid-state structures of 6 and 8 were determined confirming that 8 possesses intra- and intermolecular hydrogen bonds resulting in a dimer formation. The thermal behavior of 6 – 8 was studied by TG and TG-MS. Under oxygen CuO was formed, whereas under Ar Cu/Cu2O ( 6 ) or Cu ( 8 ) was obtained. Complex 6 was used as CVD precursor for Cu and Cu-oxide deposition (substrate temp., 400–500 °C, N2, 60 mL · min–1; O2, 60 mL · min–1; pressure, 0.87–1.5 mbar). The as-obtained deposits show separated particles of different appearance at the substrate surface as evidenced by SEM. Non-volatile 8 was applied as spin-coating precursor for Cu and CuO formation [conc. 0.25 mol · L–1; volume 0.2 mL; 3000 rpm; depos. time 2 min; heating rate 50 K · min–1; holding time 60 min (Ar), 120 min (air) at 800 °C]. The samples on silicon consist of granulated particles (Ar) or are non-dense with a grainy topography (air). EDX and XPS measurements confirmed the formation of Cu (Ar) or CuO (O2) with up to 13 mol-% C impurity. 相似文献
Solar radiation is a versatile source of energy, convertible to different forms of power. A direct path to exploit it is the generation of heat, for applications including passive building heating, but it can also drive secondary energy-conversion steps. We present a novel concept for a hybrid material which is both strongly photo-absorbing and with superior characteristics for the insulation of heat. The combination of that two properties is rather unique, and make this material an optical superheater. To realize such a material, we are combining plasmonic nanoheaters with alumina aerogel. The aerogel has the double function of providing structural support for plasmonic nanocrystals, which serve as nanoheaters, and reducing the diffusion rate of the heat generated by them, resulting in large local temperature increases under a relatively low radiation intensity. This work includes theoretical discussion on the physical mechanisms impacting the system's balanced thermal equilibrium. 相似文献
Carbon moieties on late transition metals are regarded as poisoning agents in heterogeneous catalysis. Recent studies show the promoting catalytic role of subsurface C atoms in Pd surfaces and their existence in Ni and Pt surfaces. Here energetic and kinetic evidence obtained by accurate simulations on surface and nanoparticle models shows that such subsurface C species are a general issue to consider even in coinage noble‐metal systems. Subsurface C is the most stable situation in densely packed (111) surfaces of Cu and Ag, with sinking barriers low enough to be overcome at catalytic working temperatures. Low‐coordinated sites at nanoparticle edges and corners further stabilize them, even in Au, with negligible subsurface sinking barriers. The malleability of low‐coordinated sites is key in the subsurface C accommodation. The incorporation of C species decreases the electron density of the surrounding metal atoms, thus affecting their chemical and catalytic activity. 相似文献
Journal of Solid State Electrochemistry - Lithium ion conductivity of lithium hexaoxozirconate Li8ZrO6 doped by Mg2+, Sr2+, Nb5+, V5+, and Ce4+ cations was studied using impedance spectroscopy. The... 相似文献
Prolonged drug residence times may result in longer‐lasting drug efficacy, improved pharmacodynamic properties, and “kinetic selectivity” over off‐targets with high drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Herein, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5‐iodotubercidin (5‐iTU) derivatives as a model for an archetypal active‐state (type I) kinase–inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. The halogen–aromatic π interactions in the haspin–inhibitor complexes were characterized by means of kinetic, thermodynamic, and structural measurements along with binding‐energy calculations. 相似文献
The backward-facing step or the sudden expansion in internal flows is an important problem in different areas. In this study, a porous baffle is mounted on the opposite wall of a sudden expansion to enhance heat transfer near the step. Unlike the solid baffle, which is extensively studied in the literature, the porous baffle has a lower pressure drop, and its properties can be tuned to reach the optimal prospected performance. Effects of different porous baffle geometrical parameters including its normalized height (Hb?=?0.5, 1.0, 1.5, 1.75), width (Wb?=?0.5, 1, 1.5, 2.0, 2.5), porous baffle-step relative distance (D?=?1, 2, 3, 4), Darcy number (10?2, 10?3, 10?4, 10?6), and Reynolds number (100, 200, 300, 400, 500) on the heat transfer and pressure drop are investigated. The simulation indicates that higher Reynolds numbers enhance more the heat transfer (35% improvement at Re?=?500 with respect to 10% at Re?=?100). Also, longer baffles can lead to higher heat transfer rates (5% improvement in Hb?=?0.5 with respect to 32% at Hb?=?1.5).