首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   0篇
化学   228篇
物理学   3篇
  2023年   4篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   16篇
  2011年   18篇
  2010年   3篇
  2009年   4篇
  2008年   19篇
  2007年   24篇
  2006年   29篇
  2005年   14篇
  2004年   17篇
  2003年   20篇
  2002年   22篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   5篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
排序方式: 共有231条查询结果,搜索用时 78 毫秒
211.
A series of upper-rim p-allyl and p-methoxyphenylazocalix[4]arenes (6, 8, 9a,b, and 10a,b) were synthesized and shown to exhibit substantial color changes upon complexation with Hg2+ ion. Both the upper-rim p-allyl- and p-methoxyphenylazo groups on calix[4]arenes are proven to be key components in the recognition of Hg2+ ion. Job's plots revealed 1:1 binding stoichiometry for all these p-allyl- and p-arylazo-coupled calix[4]arenes with Hg2+ ions and Benesi-Hilderbrand plots were used for determination of their association constants. Our results also demonstrated that two p-methoxyphenylazo groups prefer to bind Hg2+ in a distal orientation rather than a proximal one, and if there are three p-methoxyphenylazo groups, the third flanking p-methoxyphenylazo group plays a role in disturbing the binding of the two distal diazo groups. Furthermore, it should be noted that triazocalix[4]arenes (6, 9a, and 9b) responded to all 14 metal ions without showing much preference among the eight transition-metal ions screened in this work (Cr3+, Ni2+, Cu2+, Ag+, Cd2+, Hg+, Hg2+, and Pb2+).  相似文献   
212.
A series of copper(II) complexes 1 derived from unsymmetric 1,3,4-thiadiazoles 2 exhibiting mesogenic properties are reported. All the precursors 2 and 3 exhibited smectic A or/and smectic C phases, whereas, copper complexes formed nematic, SmA or SmC phases. The mesophases formed by derivatives 2 and 3 were probably attributed to the H-bondings induced both intramolecularly or/and intermolecularly between amide (-NH) and phenolic (-OH) groups. The crystal and molecular structures of mesogenic 2-(5-(2-(hexyloxy)naphthalene-6-yl)-1,3,4-oxadiazole-2-yl)phenol (2; n=6, m=6) were determined by means of X-ray structural analysis. It crystallizes in the monoclinic space group P-1, with a=7.4255(18) Å, b=8.209(2) Å, c=17.315(5) Å, and Z=2. An intermolecular H-bond (d=1.89 Å) between N2 and H1A atoms with an angle of 161.5° was observed. All molecules were packed as tilted layer arrangement and a π-π interaction (ca. 3.56 Å) was observed. Variable temperature FTIR and 1H NMR spectroscopies were also used to probe the possible H-bondings formed in compound 2 (m=0, n=6). The fluorescent properties of these compounds 2 were examined. All λmax peaks of the absorption and photoluminescence spectra occurred at ca. 359-363 nm and 519-537 nm, respectively. Excited state intramolecular proton transfer (ESIPT) reaction in this type of ortho-hydroxy-1,3,4-thiadiazole was also observed.  相似文献   
213.
214.
Chang SY  Chen JL  Chi Y  Cheng YM  Lee GH  Jiang CM  Chou PT 《Inorganic chemistry》2007,46(26):11202-11212
A new Pt(II) dichloride complex [Pt(fppzH)Cl2] (1), in which fppzH = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, was prepared by the treatment of a pyridylpyrazole chelate fppzH with K2PtCl4 in aqueous HCl solution. Complex 1 could further react with its parent pyrazole (pzH), 3,5-dimethylpyrazole (dmpzH), or 3,5-di-tert-butylpyrazole (dbpzH) to afford the monometallic [Pt(fppz)(pzH)Cl] (2), [Pt(fppz)(dmpzH)Cl] (3), [Pt(fppz)(dmpzH)2]Cl (4), or two structural isomers with formula [Pt(fppz)(dbpzH)Cl] (5a,b). Single-crystal X-ray diffraction studies of 2, 4, and 5a,b revealed a square planar Pt(II) framework, among which a strong interligand hydrogen bonding occurred between fppz and pzH ligands in 2. This interligand H-bonding is replaced by dual N-H...Cl interaction in 4 and both intermolecular N-H...O (with THF solvate) and N-H...Cl interaction in 5a,b, respectively; the latter are attributed to the bulky tert-butyl substituents that force the dbpzH ligand to adopt the perpendicular arrangement. Furthermore, complex 2 underwent rapid deprotonation in basic media to afford two isomeric complexes with formula [Pt(fppz)(mu-pz)]2 (6a,b), which are related to each other according to the spatial orientation of the fppz chelates, i.e., trans- and cis-isomerism. Similar reaction exerted on 3 afforded isomers 7a,b. Both 6a,b (7a,b) are essentially nonemissive in room-temperature fluid state but afford strong blue phosphorescence in solid state prepared via either vacuum-deposited thin film or 77 K CH2Cl2 matrix. As also supported by the computational approaches, the nature of emission has been assigned to be ligand-centered triplet pipi* mixed with certain metal-to-ligand charge-transfer character.  相似文献   
215.
Cheng YM  Li EY  Lee GH  Chou PT  Lin SY  Shu CF  Hwang KC  Chen YL  Song YH  Chi Y 《Inorganic chemistry》2007,46(24):10276-10286
We present the strategic design and synthesis of Os(II) complexes bearing a single pyridyl azolate pi-chromophore with an aim to attain high efficiency blue phosphorescence by way of localized transition. It turns out that our proposal of localized excitation seems to work well upon anchoring a single pi-chromophore on the Os(II) complexes such that the control of MLCT versus pipi* (or even LLCT) transitions is more straightforward. Among the titled complexes, [Os(CO)3(tfa)(fppz)] (1) and [Os(CO)3(tfa)(fbtz)] (5) (tfa=trifluoroacetate, (fppz)H=3-(trifluoromethyl)-5-(2-pyridyl)pyrazole, and (fbtz)H=3-(trifluoromethyl)-5-(4-tert-butyl-2-pyridyl)-1,2,4-triazole) give the anticipated blue phosphorescence with efficiencies of 0.26 (lambdamax=460 nm) and 0.27 (lambdamax=450 nm), respectively. For their halide analogues [Os(CO)3(X)(fppz)] (2, X=Cl; 3, X=Br; 4, X=I) and phosphine-substituted isomeric derivatives [Os(tfa)(fppz)(PPh2Me)2(CO)] (6-8), the localization of the excitation energy seems to populate at certain vibrational modes with weak bonding strength and hence an associated shallow potential energy surface to induce a facile radiationless transition. Furthermore, their ancillary ligands play an important role in fine-tuning not only the energy gap but also the emission intensity, i.e., in manifesting the radiationless transition pathways. Our results clearly show that there is always a tradeoff upon varying the parameters in an aim to optimize the hue and efficiency of phosphorescence toward blue.  相似文献   
216.
217.
The synthesis of a new family of octahedral Ir(III) complexes with dual cyclometalating phosphine chelates, namely: 1-(diphenylphosphino)naphthalene (dpnaH) and isoquinoline (dppiH), is reported. Two series of intermediate complexes, [Ir(dpna)(tht)(2)Cl(2)] (1), [Ir(dpna)(2)(OAc)] (2), [Ir(dppiH)(dppi)Cl(2)] (3) and [Ir(dppi)(2)(OAc)] (4), which can be classified by the coexistence of either a pair of cis-chlorides or a single acetate chelate, were obtained from treatment of phosphine with [IrCl(3)(tht)(3)] (tht = tetrahydrothiophene). The in situ generated acetate complexes 2 and 4 could react with azolate chelates, namely: 5-(2-pyridyl)-3-trifluoromethyl pyrazole (fppzH) and 5-(1-isoquinolyl)-3-tert-butyl-1,2,4-triazole (iqbtzH), to afford a new series of luminescent complexes [Ir(dpna)(2)(fppz)] (5a and 5b), [Ir(dpna)(2)(iqbtz)] (6a and 6b), [Ir(dppi)(2)(fppz)] (7a) and [Ir(dppi)(2)(iqbtz)] (8a). The phosphorescence lifetime (τ(obs)) fell in the range of a few tens of μs, showing possession of excessive ligand-centered ππ* mixed in part with MLCT character. A density functional theory (DFT) study was also conducted in order to shed light on the origin of the transitions in the absorption and emission spectra and to predict emission energies for these complexes. Organic light emitting diodes (OLEDs) displaying bright orange emission and with maximum η(ext) up to 17.1% were fabricated employing complexes 6a and 8a as the phosphorescent dopants.  相似文献   
218.
Four low-spin {FeNO}6 complexes, [Fe(NO)(PS2)(PS2H)] ( 1 , PS2H2 = bis(2-dimercaptophenyl)phenylphosphine) with a pendant thiol, [Fe(NO)(PS2)(PS2CH3)] ( 2 ) bearing a pendant thioether, and [Fe(NO)(PS2)(RPS)] (RH, 4a ; RTMS, 4b ) without the noncovalent thiol/thioether group are spectroscopically and structurally characterized. In comparisons of the νNO, absorption energy in UV/vis spectra and structural parameters from single X-ray diffraction studies, the four iron-nitrosyl-thiolato compounds share similarity in electronic structure. Complex 1 with a pendant thiol leads to NO and HNO production upon exposure to the light. Photolysis of 2 bearing a pendant thioether only affords NO. Effective detection of HNO or NO from 1 or 2 is achieved by the employment of [MnIII(TMSPS3)(DABCO)]. In contrast, 4a and 4b show inertness toward visible-light stimulus. Photolysis and having pendant thiol/thioether group play key roles in NO production from these iron-nitrosyl-thiolato complexes, that is, the Fe-NO bond is weakened by exposure to light and the noncovalent SH of 1 or SCH3 of 2 can serve as an incoming ligand to interact with Fe atom, resulting in a transient with intramolecular [RS⋅⋅⋅Fe⋅⋅⋅NO] interaction (RH and CH3) which could facilitate NO dissociation.  相似文献   
219.
220.
Three binuclear Cu(II) complexes of two pyrimidine derived Schiff base ligands, 2-S-methyl-6-methyl-4-formyl pyrimidine-N(4)-ethyl thiosemicarbazone (HL1) and salicyl hydrazone of 2-hydrazino-4,6-dimethylpyrimidine (HL2), have been prepared. HL1 produces a bis(μ-thiolato) Cu(II) complex co-crystallizing with its mononuclear analog, [Cu2(L1)2(NO3)2][Cu(L1)(NO3)] (1). On the other hand HL2 shows versatility by producing two different classes of binuclear Cu(II) complexes, a bis(μ-phenoxo) complex [Cu2(L2)2(NO3)2] (2) and another a (μ-4,4′-bipyridyl) complex, [Cu2(L2)2(μ-4,4′-bipyridyl)(NO3)2] (3) under suitable conditions. All the three complexes show distorted square pyramidal geometry around each Cu atom but to a varied extent. Magnetic behavior of complex 1 shows that it is strongly ferromagnetic in nature whereas compounds 2 and 3 are weakly antiferromagnetic in nature. A magnetostructural correlation study combined with molecular modelling on complexes 1 and 2 has thrown light on the difference on magnetic interaction between the Cu atoms in these two complexes. Various factors that may be responsible for such differences are also explored. A novel and potentially useful pH dependant conversion of 3 to 2 has also been noticed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号