首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   6篇
化学   72篇
力学   2篇
数学   2篇
物理学   31篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   11篇
  2003年   5篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1986年   3篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1943年   2篇
排序方式: 共有107条查询结果,搜索用时 109 毫秒
51.
The kinetics of the reaction of murexide with different divalent metal ions of class A and B have been measured by the temperature-jump-relaxation method. The second-order formation rate constant increases in the sequence Ni2+ < Co2+ < Mn2+ < Zn2+ < Cd2+ ? Cu2+ ? Ca2+ < Sr2+ < Ba2+ < Pb2+. Thermodynamic data obtained from kinetic and equilibrium studies, respectively, are in good agreement. The results are compared with the characteristic rate constants for H2O-exchange in the inner coordination sphere of these metal ions, which follow the same sequence. The rate constants of the reaction of murexide with various trivalent metal ions, including the lanthanides, are also discussed in terms of current ideas on metal complex formation.  相似文献   
52.
Maple Syrup Urine disease (USUD) is an autosomal recessive inherited metabolic disorder of branched-chain amino acid (L-valin, L-leucine, and L-isoleucine metabolism named after the characteristic smell of affected patients urine. MSUD is caused by a deficiency of the branched-chain α-keto acid dehydrogenase compex resulting in an accumulation of branched-chain aamino acids and the corresponding α-keto-and α-hydroxy acids in blood, urine and cerebrospinal fluid causing neurological damage and mental retardation. The enantioselective analysis of chiral MSUD metabolites and analysis of achiral compounds as corresponding N,O-methoxycarbonyl methyl esters by derivatization with methyl chloroformate (MCF) has been achieved simultaneusly by enantioselective multidimensional gas chromatography-mass spectrometry using heptakis (2,3-di-O-methyl-6-O-tert-butyl-dimethyl-silyl)-β-cyclodextrin as chiral stationary phase. Derivatization with MCF allows the analysis of the structurally different metabolitetes such as branched-chain-carboxylic-, α-oxo-, α-hydroxy- and α-amino acids in a single chromaatographic run. Mass selective detection immensely improves the unequivocaaal identification of metabolites even when they occur as trace compound. The described method allows a reliable screening of MSUD metabolites in patients' urine without time consuming sample preparation and is also suitable for label enrichment analysis without any methodical changes. During this investigation urine sample from three MSUD paatients were analyzed.  相似文献   
53.
A new class of potent electrophilic "R(+)" alkylating agents has been developed using weakly nucleophilic carborane anions as leaving groups. These reagents, R(CHB(11)Me(5)X(6)) (R = Me, Et, and i-Pr; X = Cl, Br), are prepared via metathesis reactions with conventional alkylating agents such as alkyl triflates, using the high oxophilicity of silylium ion-like species, Et(3)Si(carborane), as the driving force to obtain increased alkyl electrophilicity. The crystal structure of the isopropyl reagent, i-Pr(CHB(11)Me(5)Br(6)), has been determined, revealing covalence in the alkyl-carborane bonding. This contrasts with the free i-Pr(+) carbocation observed when the anion is less coordinating (e.g. Sb(2)F(11)(-)) or with tertiary alkyl centers, as in [tert-butyl][carborane] salts. In solution, the reagents exist as equilibrating isomers with the alkyl group at the 7-11 or 12 halide positions of the CB(11) icosahedral carborane anion. These alkylating agents are so electrophilic that they (a) react with alkanes at or below room temperature via hydride extraction to produce carbenium ions, (b) alkylate benzene without a Friedel-Crafts catalyst to give arenium ions, and (c) alkylate electron-deficient phosphorus compounds that are otherwise inert to conventional alkylating agents such as methyl triflate.  相似文献   
54.
The EPR spectra of the fluoroformyloxyl radical FCO(2) isolated in noble gas matrices at temperatures from 5 to 30 K have been investigated. This study provides principal g values and (19)F hyperfine coupling constants of FCO(2) measured in Ar matrices at 5 K, and yields isotropic values at 30 K. A detailed analysis of the coupling parameters obtained from the EPR and a concomitant high resolution spectroscopic MMW study supported by quantum chemical calculations rationalized the fine and hyperfine interactions of this simple fluorooxyl radical.  相似文献   
55.
56.
57.
58.
The lutidine derivative (2,6-Me(2))(4-Bpin)C(5)H(2)N when combined with B(C(6)F(5))(3) yields a frustrated Lewis pair (FLP) which reacts with H(2) to give the salt [(2,6-Me(2))(4-Bpin)C(5)H(2)NH][HB(C(6)F(5))(3)] (1). Similarly 2,2'-(C(5)H(2)(4,6-Me(2))N)(2) and (4,4'-(C(5)H(2)(4,6-Me(2))N)(2) were also combined with B(C(6)F(5))(3) and exposed to H(2) to give [(2,2'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(4,6-Me(2))N][HB(C(6)F(5))(3)] (2) and [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))N] [HB(C(6)F(5))(3)] (3), respectively. The mono-pyridine-N-oxide 4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO formed the adduct (4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)(B(C(6)F(5))(3)) (4) which reacts further with B(C(6)F(5))(3) and H(2) to give [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)B(C(6)F(5))(3)] [HB(C(6)F(5))(3)] (5). In a related sense, 2-amino-6-CF(3)-C(5)H(3)N reacts with B(C(6)F(5))(3) to give (C(5)H(3)(6-CF(3))NH)(2-NH(B(C(6)F(5))(3))) (6). Similarly, the species, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine were reacted with B(C(6)F(5))(3) to give the products as (C(9)H(6)NH)(2-NHB(C(6)F(5))(3)) (7), (C(9)H(6)N)(8-NH(2)B(C(6)F(5))(3)) (8) and (C(5)H(3)(6-Me)NH)(2-OB(C(6)F(5))(3)) (9), respectively; while 2-amino-6-picoline, 2-amino-6-CF(3)-pyridine, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine react with ClB(C(6)F(5))(2) to give the species (C(5)H(3)(6-R)NH)(2-NH(ClB(C(6)F(5))(2))) (R = Me (10), R = CF(3) (11)) (C(9)H(6)NH)(2-NH(ClB(C(6)F(5))(2))) (12), (C(9)H(6)N)(8-NH(2)ClB(C(6)F(5))(2)) (13) and (C(5)H(3)(6-Me)NH)(2-OClB(C(6)F(5))(2)) (14), respectively. In a similar manner, 2-amino-6-picoline and 2-amino-quinoline react with B(C(6)F(5))(2)H to give (C(5)H(3)(6-Me)NH)(2-NH(HB(C(6)F(5))(2))) (15) and (C(9)H(6)NH)(2-NH(HB(C(6)F(5))(2))) (16). The corresponding reaction of 8-amino-quinoline yields (C(9)H(6)N)(8-NHB(C(6)F(5))(2)) (17). In a similar fashion, reaction of 2-amino-6-CF(3)-pyridine resulted in the formation of (18) formulated as (C(5)H(3)(6-CF(3))N)(2-NH(B(C(6)F(5))(2)). Finally, treatment of 15 with iPrMgCl gave (C(9)H(6)N)(2-NH(B(C(6)F(5))(2))) (19). Crystallographic studies of 1, 2, 4, 6, 7, 10, 11, 12 and 15 are reported.  相似文献   
59.
We compare different centrality metrics which aim at an identification of important nodes in complex networks. We investigate weighted functional brain networks derived from multichannel electroencephalograms recorded from 23 healthy subject under resting-state eyes-open or eyes-closed conditions. Although we observe the metrics strength, closeness, and betweenness centrality to be related to each other, they capture different spatial and temporal aspects of important nodes in these networks associated with behavioral changes. Identifying and characterizing of these nodes thus benefits from the application of several centrality metrics.  相似文献   
60.
It is shown how one can transform scalar first-order ordinarydifferential equations which admit non-local symmetries of theexponential type to integrable equations admitting canonicalexponential non-local symmetries. As examples we invoke theAbel equation of the second kind, the Riccati equation and naturalgeneralizations of these. Moreover, our method describes howa double reduction of order for a second-order ordinary differentialequation which admits a two-dimensional Lie algebra of generatorsof point symmetries can be affected if the second-order equationis first reduced in order once by a symmetry which does notspan an ideal of the two-dimensional Lie algebra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号