首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   10篇
化学   206篇
晶体学   2篇
力学   5篇
数学   23篇
物理学   66篇
  2024年   3篇
  2023年   5篇
  2022年   18篇
  2021年   13篇
  2020年   24篇
  2019年   13篇
  2018年   10篇
  2017年   9篇
  2016年   18篇
  2015年   6篇
  2014年   16篇
  2013年   17篇
  2012年   17篇
  2011年   24篇
  2010年   17篇
  2009年   10篇
  2008年   14篇
  2007年   19篇
  2006年   18篇
  2005年   18篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  1999年   1篇
  1985年   1篇
排序方式: 共有302条查询结果,搜索用时 31 毫秒
101.
Cu(I)/Fe(III) promoted C4-dicarbonylation of 5-aminopyrazole is developed. The strategy involved radical triggered direct oxidative coupling of 5-aminopyrazoles with methyl ketones using aerial oxygen as a source of oxygen in newly generated carbonyl group. CuI is used as catalyst and FeCl3·6H2O is used as additive and the reaction proceeded at 120?°C in DMSO for 9–12?h. It is found that use of Cu(II) catalyst gives the thiomethylated product by reacting with DMSO instead of oxidative coupling. A plausible mechanism is also given.  相似文献   
102.
The present paper describes various attractive logical code conversions using optical micro-ring resonator. We have proposed an all-optical switching activity using silicon waveguide based micro-ring resonator under low-power operation through two-photon absorption effect. The different properties of the optical switch are analyzed through numerical simulation. We have also proposed and described all-optical binary-to-octal, binary-coded-decimal-to-excess-3 and binary-to-Gray-code converter circuits by this proposed architecture. Numerical simulation results for code conversion verifying the proposed methods are given in this paper. We identify a combination of feasible ring radius and detuning through numerical simulation that allows analyzing the system performance of the scheme.  相似文献   
103.
Finite element modeling of the impact of flexible woven fabrics using a yarn level architecture allows the capturing of complex projectile-fabric and yarn–yarn level interactions, however it requires very large computational resources. This paper presents a multiscale modeling technique to simulate the impact of flexible woven fabrics. This technique involves modeling the fabric using a yarn level architecture around the impact region and a homogenized or membrane type architecture at far field regions. The level of modeling resolution decreases with distance away from the impact zone. This results in a finite element model with much lower computational requirements. The yarns are modeled using both solid and shell finite elements. Impedances are matched across all interfaces created between the various regions of the model to prevent artificial reflections of the longitudinal strain waves. A systematic approach is presented to determine geometric and material parameters of the homogenized zone. The multiscale model is extensively validated against baseline models. The limitations of using shell elements to model the yarn level architecture underneath the projectile are addressed.  相似文献   
104.
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.  相似文献   
105.
Chemical oxygen iodine laser (COIL) is a high-power laser with potential applications in both military as well as in the industry. COIL is the only chemical laser based on electronic transition with a wavelength of 1.315 μm, which falls in the near-infrared (IR) range. Thus, COIL beam can also be transported via optical fibers for remote applications such as dismantling of nuclear reactors. The efficiency of a supersonic COIL is essentially a function of mixing specially in systems employing cross-stream injection of the secondary lasing (I2) flow in supersonic regime into the primary pumping (O21Δg) flow. Streamwise vorticity has been proven to be among the most effective manner of enhancing mixing and has been utilized in jet engines for thrust augmentation, noise reduction, supersonic combustion, etc. Therefore, a computational study of the generation of streamwise vorticity in the supersonic flow field of a COIL device employing a winglet nozzle with various delta wing angles of 5°, 10°, and 22.5° has been carried out. The study predicts a typical Mach number of approximately 1.75 for all the winglet geometries. The analysis also confirms that the winglet geometry doubles up both as a nozzle and as a vortex generator. The region of maximum turbulence and fully developed streamwise vortices is observed to occur close to the exit, at x/λ of 0.5, of the winglets making it the most suitable region for secondary flow injection for achieving efficient mixing. The predicted length scale of the scalloped mixer formed by the winglet nozzle is 4λ. Also, the winglet nozzle with 10° lobe angle is most suitable from the point of view of mixing developing cross-stream velocity of 120 m/s with acceptable pressure drop of 0.7 Torr. The winglet geometry with 5° lobe angle is associated with a low cross-stream velocity of 60 m/s, whereas the one with 22.5° lobe angle is associated with a large static and total pressure drop of 1.87 and 9.37 Torr, respectively, making both the geometries unsuitable for COIL systems. The experimental validation shows a close agreement with the computationally predicted values. The studies for the most suitable 10° lobe angle geometry show an observed Mach number of 1.72 with an improved mixing efficiency of 74% due to the occurrence of predicted streamwise vortices in the flow.  相似文献   
106.
Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.  相似文献   
107.
Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.  相似文献   
108.
Haloperidol (HPL) is a typical antipsychotic drug used to treat acute psychotic conditions, delirium, and schizophrenia. Solid charge transfer (CT) products of HPL with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have not been reported till date. Therefore, we conducted this study to investigate the donor–acceptor CT interactions between HPL (donor) and TCNQ and PA (π-acceptors) in liquid and solid states. The complete spectroscopic and analytical analyses deduced that the stoichiometry of these synthesized complexes was 1:1 molar ratio. Molecular docking calculations were performed for HPL as a donor and the resulting CT complexes with TCNQ and PA as acceptors with two protein receptors, serotonin and dopamine, to study the comparative interactions among them, as they are important neurotransmitters that play a large role in mental health. A molecular dynamics simulation was ran for 100 ns with the output from AutoDock Vina to refine docking results and better examine the molecular processes of receptor–ligand interactions. When compared to the reactant donor, the CT complex [(HPL)(TCNQ)] interacted with serotonin and dopamine more efficiently than HPL only. CT complex [(HPL)(TCNQ)] with dopamine (CTtD) showed the greatest binding energy value among all. Additionally, CTtD complex established more a stable interaction with dopamine than HPL–dopamine.  相似文献   
109.
Microalgae that have recently captivated interest worldwide are a great source of renewable, sustainable and economical biofuels. The extensive potential application in the renewable energy, biopharmaceutical and nutraceutical industries have made them necessary resources for green energy. Microalgae can substitute liquid fossil fuels based on cost, renewability and environmental concern. Microfluidic-based systems outperform their competitors by executing many functions, such as sorting and analysing small volumes of samples (nanolitre to picolitre) with better sensitivities. In this review, we consider the developing uses of microfluidic technology on microalgal processes such as cell sorting, cultivation, harvesting and applications in biofuels and biosensing.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号