首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1341篇
  免费   50篇
  国内免费   19篇
化学   1047篇
晶体学   8篇
力学   26篇
数学   146篇
物理学   183篇
  2024年   1篇
  2023年   19篇
  2022年   22篇
  2021年   22篇
  2020年   28篇
  2019年   38篇
  2018年   18篇
  2017年   27篇
  2016年   54篇
  2015年   49篇
  2014年   39篇
  2013年   75篇
  2012年   113篇
  2011年   119篇
  2010年   48篇
  2009年   51篇
  2008年   109篇
  2007年   89篇
  2006年   121篇
  2005年   87篇
  2004年   71篇
  2003年   49篇
  2002年   74篇
  2001年   12篇
  2000年   18篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有1410条查询结果,搜索用时 15 毫秒
41.
We report the application of "click" chemistry for the synthesis of hybrid calixarenes appended on the upper rim with carbohydrate and N,C-protected alpha-amino acids. The chemoselective N- or C-deprotection of the alpha-amino acids and their subsequent transformation into dipeptides is described. The first example of a chemo-enzymatic synthesis on upper rim derived calix[4]arenes using trans-sialidase affords sialylated lactose calix[4]arenes. Our innovative chemo-enzymatic process paves the way for further applications.  相似文献   
42.
The development of novel anti-infectives requires unprecedented strategies targeting pathways which are solely present in pathogens but absent in humans. Following this principle, we developed inhibitors of lipoic acid ( LA ) salvage, a crucial pathway for the survival of LA auxotrophic bacteria and parasites but non-essential in human cells. An LA -based probe was selectively transferred onto substrate proteins via lipoate protein ligase (LPL) in intact cells, and their binding sites were determined by mass spectrometry. Probe labeling served as a proxy of LPL activity, enabling in situ screenings for cell-permeable LPL inhibitors. Profiling a focused compound library revealed two substrate analogs ( LAMe and C3 ) as inhibitors, which were further validated by binding studies and co-crystallography. Importantly, LAMe exhibited low toxicity in human cells and achieved killing of Plasmodium falciparum in erythrocytes with an EC50 value of 15 μM, making it the most effective LPL inhibitor reported to date.  相似文献   
43.
44.
Carbon‐doped titania (C‐TiO2) nanoparticles were synthesized by the sol–gel method at different calcination temperatures (300–600°C) employing titanium tetraisopropoxide (TTIP) as the titanium source and polyoxyethylene sorbitan monooleate (Tween 80) as the carbon source. The physical properties of C‐TiO2 samples were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities were checked through the photodegradation of phenolphthalein (PHP) under ultraviolet irradiation. The UV spectrum showed that the carbon doping extends the absorption range of TiO2 to the visible region. However, the photocatalytic activity is affected by the electron–hole recombination phenomenon, as revealed by the photoluminescence (PL) study. According to the PL spectra, carbon doping reduces the edge‐to‐edge electron–hole recombination. Nevertheless, the number of defect sites is greatly influenced by the calcination temperature of C‐TiO2. C‐TiO2 that was calcined at 400°C showed the highest photodegradation percentage of PHP, which was mainly attributed to the synergic effect of the low direct edge‐to‐edge electron–hole recombination, high content of defect sites, and retention of active electrons on the surface hydroxyl group.  相似文献   
45.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   
46.
Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna–Matthews–Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS). The size measured by ES-SMPS for FMO, chlorosomes, LH2, and phycobilisome were 6.4, 23.3, 9.5, and 33.4?nm, respectively. These size measurements were compared with values measured by dynamic light scattering and those reported in the literature. These complexes were deposited onto a transparent substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs were measured. It was observed that the LHCs have light absorption and fluorescence spectra similar to that in solution, demonstrating the viability of the process.  相似文献   
47.
Complexation of Pu(iv) with TMDGA, TEDGA, and TODGA diglycolamide ligands was followed by vis-NIR spectroscopy. A crystal structure determination reveals that TMDGA forms a 1?:?3 homoleptic Pu(iv) complex with the nitrate anions forced into the outer coordination sphere.  相似文献   
48.
This work explores the opportunity to substantially reduce the cost of hydrogen evolution reaction (HER) catalysts by supporting monolayer (ML) amounts of precious metals on transition metal carbide substrates. The metal component includes platinum (Pt), palladium (Pd), and gold (Au); the low-cost carbide substrate includes tungsten carbides (WC and W(2)C) and molybdenum carbide (Mo(2)C). As a platform for these studies, single-phase carbide thin films with well-characterized surfaces have been synthesized, allowing for a direct comparison of the intrinsic HER activity of bare and Pt-modified carbide surfaces. It is found that WC and W(2)C are both excellent cathode support materials for ML Pt, exhibiting HER activities that are comparable to bulk Pt while displaying stable HER activity during chronopotentiometric HER measurements. The findings of excellent stability and HER activity of the ML Pt-WC and Pt-W(2)C surfaces may be explained by the similar bulk electronic properties of tungsten carbides to Pt, as is supported by density functional theory calculations. These results are further extended to other metal overlayers (Pd and Au) and supports (Mo(2)C), which demonstrate that the metal ML-supported transition metal carbide surfaces exhibit HER activity that is consistent with the well-known volcano relationship between activity and hydrogen binding energy. This work highlights the potential of using carbide materials to reduce the costs of hydrogen production from water electrolysis by serving as stable, low-cost supports for ML amounts of precious metals.  相似文献   
49.
Two new hybrid compounds, [Co(4,4′-bpy)2(H2O)4][(4,4′-bpyH2]2[CoW12O40]·8H2O (1) and [Fe(2,2′-bpy)3]3[H2W12O40]·6H2O (2), (4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine) have been hydrothermally synthesized. These solids were characterized by elemental analysis, thermogravimetric analysis, UV–Vis spectroscopy and X-ray diffraction. The hydrogen-bonding interactions in 1 lead to the formation of a three dimensional network consisting of [CoW12O40]6− anionic clusters, [Co(4,4′-bpy)2(H2O)4]2+ cations and lattice water molecules, while the discrete Keggin ion [H2W12O40]6− in compound 2 is surrounded by 14 [Fe(2,2′-bpy)3]2+ complexes through CH?O interactions (2.24–2.56 Å).  相似文献   
50.
In this and the following paper, we describe the ultrafast structural fluctuations and rearrangements of the hydrogen bonding network of water using two-dimensional (2D) infrared spectroscopy. 2D IR spectra covering all the relevant time scales of molecular dynamics of the hydrogen bonding network of water were studied for the OH stretching absorption of HOD in D2O. Time-dependent evolution of the 2D IR line shape serves as a spectroscopic observable that tracks how different hydrogen bonding environments interconvert while changes in spectral intensity result from vibrational relaxation and molecular reorientation of the OH dipole. For waiting times up to the vibrational lifetime of 700 fs, changes in the 2D line shape reflect the spectral evolution of OH oscillators induced by hydrogen bond dynamics. These dynamics, characterized through a set of 2D line shape analysis metrics, show a rapid 60 fs decay, an underdamped oscillation on a 130 fs time scale induced by hydrogen bond stretching, and a long time decay constant of 1.4 ps. 2D surfaces for waiting times larger than 700 fs are dominated by the effects of vibrational relaxation and the thermalization of this excess energy by the solvent bath. Our modeling based on fluctuations with Gaussian statistics is able to reproduce the changes in dispersed pump-probe and 2D IR spectra induced by these relaxation processes, but misses the asymmetry resulting from frequency-dependent spectral diffusion. The dynamical origin of this asymmetry is discussed in the companion paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号