首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
化学   74篇
数学   7篇
物理学   15篇
  2024年   4篇
  2023年   2篇
  2022年   4篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   10篇
  2013年   13篇
  2012年   12篇
  2011年   10篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2001年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
91.
92.
In this paper, we have explored and extended the use of frequency selective surface towards the terahertz regime of the electromagnetic spectrum where interesting applications such as imaging, sensing and communication exist. We have discussed a synthesis technique to design the single square loop frequency selective surface (SSLFSS) at 150 and 300 GHz which have found suitable application in the fast analysis and fabrication of the frequency selective surface. Moreover, the analytical results have been supported by the CST Microwave Studio and Ansoft HFSS commercial simulators. We have discussed the angular insensitivity of the SSLFSS at 150 GHz as well as 300 GHz. However, the specific problems arise at terahertz frequencies as compared to the radio and microwave frequencies are the ohmic losses. The proposed analysis has been extended from 100 GHz to 350 GHz to discuss the ohmic and dielectric losses. We have also discussed the other important issues which are very much significant in the terahertz regime of the spectrum such as skin depth and surface roughness.  相似文献   
93.
A catalyst-free multicomponent reaction (MCR) capable of affording a wide range of novel benzo[a][1,3]oxazino[6,5-c]phenazine derivatives via one pot two-step domino protocol, in water is reported. Catalyst-free conditions along with green solvent system make the process ecofriendly as well as economical. Simple reaction conditions, easy work-up isolation, and purification of products are the significant advantages of the present protocol.  相似文献   
94.
The catalytic efficiency of mixed Cu(I)-Cu(II) system in situ generated by partial reduction of CuSO(4) with glucose in ethanol (nonanhydrous) under open air has been explored. With this catalysis, the multicomponent cascade reaction of A(3)-coupling of heterocyclic amidine with aldehyde and alkyne, 5-exo-dig cycloisomerization, and prototropic shift has afforded an efficient and eco-friendly synthesis of therapeutically important versatile N-fused imidazoles. Diverse heterocyclic amidines, several of which are known to be poorly reactive, and aldehydes are compatible in this catalytic process.  相似文献   
95.
Constructing visible-light-active Z-scheme heterojunctions has proven fruitful in enhancing the photocatalytic activity of photocatalysts for superior water clean-up. Herein, we report the fabrication of a CoFe2O4@Bi2O3/NiO (CBN) Z-scheme nanoheterojunction. The obtained CBN heterojunction was used for visible-light-assisted degradation of ofloxacin (OFL) in water. The OFL degradation efficiency achieved by the CBN heterojunction was 95.2% in 90 min with a rate constant of kapp = 0.03316 min−1, which was about eight times that of NiO and thirty times that of CoFe2O4. The photocatalytic activity of a Bi2O3/NiO Z-scheme heterojunction was greatly enhanced by the visible activity and redox mediator effect of the cobalt ferrite co-catalyst. Higher charge-carrier separation, more visible-light capture, and the Z-scheme mechanism in the Z-scheme system were the important reasons for the high performance of CBN. The scavenging experiments suggested O2 as an active species for superior OFL degradation. The possible OFL degradation pathway was predicted based on LC-MS findings of degradation intermediate products. The magnetic nature of the CBN helped in the recovery of the catalyst after reuse for six cycles. This work provides new insights into designing oxide-based heterojunctions with high visible-light activity, magnetic character, and high redox capabilities for potential practical applications in environmental treatment.  相似文献   
96.
Metal nanoparticles play a crucial role in the medical industry due to its desirable properties such as antimicrobial activity, anti-cancer property, and its application in disease diagnostics. These properties enable the nanoparticles to be used as efficient medical devices for various treatments as well as drug delivery systems. Despite all the positives, metal nanoparticles are known for causing toxicity in the living system. The toxicological effects of metal nanoparticles are due to their size, surface*e coating, and the dose administered. Therefore, it is important to study the toxic effects of these nanoparticles before they are used as medical devices for various treatments. This review focuses on the five major metal nanoparticles used in the medical field, namely; silver, gold, iron oxide, zinc oxide, and titanium dioxide nanoparticles. The non-exhaustive review consists of an introduction to the toxicological effects of these nanoparticles, the biocompatibility, and the current and future clinical perspective on metal nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号