Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers, in which the establishing of a Fulde‐Ferrell Larkin‐Ovchinnikov (FFLO) like state leads to interference effects of the superconducting pairing wave function, form the core of the superconducting spin valve. The realization of strong critical temperature oscillations in such trilayers, as a function of the ferromagnetic layer thicknesses or, even more efficient, reentrant superconductivity, are the key condition to obtain a large spin valve effect, i.e. a large shift in the critical temperature. Both phenomena have been realized experimentally in the Cu41Ni59/Nb/Cu41Ni59 trilayers investigated in the present work. 相似文献
One of the most pervasive laws in biology is the allometric scaling, whereby a biological variable Y is related to the mass M of the organism by a power law, Y=Y0Mb, where b is the so-called allometric exponent. The origin of these power laws is still a matter of dispute mainly because biological laws, in general, do not follow from physical ones in a simple manner. In this work, we review the interspecific allometry of metabolic rates, where recent progress in the understanding of the interplay between geometrical, physical and biological constraints has been achieved.
For many years, it was a universal belief that the basal metabolic rate (BMR) of all organisms is described by Kleiber's law (allometric exponent b=3/4). A few years ago, a theoretical basis for this law was proposed, based on a resource distribution network common to all organisms. Nevertheless, the 3/4-law has been questioned recently. First, there is an ongoing debate as to whether the empirical value of b is 3/4 or 2/3, or even nonuniversal. Second, some mathematical and conceptual errors were found these network models, weakening the proposed theoretical arguments. Another pertinent observation is that the maximal aerobically sustained metabolic rate of endotherms scales with an exponent larger than that of BMR. Here we present a critical discussion of the theoretical models proposed to explain the scaling of metabolic rates, and compare the predicted exponents with a review of the experimental literature. Our main conclusion is that although there is not a universal exponent, it should be possible to develop a unified theory for the common origin of the allometric scaling laws of metabolism. 相似文献
Despite the importance of a complete characterization of dendritic patterns in castings, the availability of studies on the development of tertiary dendrite arms is scarce in the literature. In the present study, the tip cooling rate, local solidification time, primary and tertiary dendrite arm spacings have been determined in Pb–Sb alloys castings directionally solidified under unsteady-state heat flow conditions. The alloys compositions experimentally examined are widely used in the as-cast condition for the manufacture of positive and negative grids of lead-acid batteries. The initial growth of tertiary dendritic arms from the secondary branches was found to occur only for a Pb–3.5 wt% Sb alloy at cooling rates in the range 0.4–0.2?K/s, with no evidence of this spacing pattern for Pb–Sb alloys having lower solute content. Tertiary dendritic branches have been observed along the entire casting lengths for alloys of the Pb–Sb hypoeutectic range having compositions higher than 4.0 wt% Sb. It is shown that a power function experimental law with a characteristic ?0.55 exponent is able to characterize the tertiary spacing evolution with the solidification cooling rate for alloys compositions ≥4.0 wt% Sb. The only exception was the Pb–3.5 wt% Sb alloy for which λ3 exhibited significant lower values when compared with the experimental values obtained for the other Pb–Sb alloys for a same solidification cooling rate. 相似文献
We observe a signal for the doubly charmed baryon Xi(+)(cc) in the charged decay mode Xi(+)(cc)-->Lambda(+)(c)K-pi(+) in data from SELEX, the charm hadroproduction experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1+/-0.5 events, a statistical significance of 6.3sigma. The observed mass of this state is 3519+/-1 MeV/c(2). The Gaussian mass width of this state is 3 MeV/c(2), consistent with resolution; its lifetime is less than 33 fs at 90% confidence. 相似文献
Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow velocity inside the porous medium, fluid dispersion and flow tracing of fluid. 相似文献
The problem of extracting quantitative information on individual particle properties from spectroscopic measurements conducted at concentrations where particle interactions become significant is of great industrial and theoretical importance. For dispersions of charged particles, this can happen at fairly low concentrations. The effect of the fluid (slurry) structure has to be taken into account to interpret the light scattering spectra of such dispersions. In this paper, a hybrid method that addresses the effect of the fluid structure is proposed. The hybrid approach describes the fluid structure by relating the “effective” Percus‐Yevick hard‐sphere parameters to the system parameters using empirical models. The feasibility of this approach is examined through a theoretical study with data generated by Monte Carlo simulations of a monodisperse dispersion of charged spherical particles using realistic interaction potentials under single scattering conditions. 相似文献
We present a novel concept for microscopic imaging. The proposed microscope-like device does not include an objective lens neither a condenser. Instead, a metallic plate of sub-wavelength hole-array with a varying pitch is used to illuminate the inspected object that is mounted very close to it. As a result, the transmitted spectrum through each hole differs from the others and therefore, each spot of the detected object is illuminated with a unique spectrum. By measuring a single spectrum that is the sum of all the spectra that are transmitted through the sample and by using spectral decomposition algorithms, the spatial transmission pattern of the object can be extracted. 相似文献