首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1991篇
  免费   81篇
  国内免费   13篇
化学   1370篇
晶体学   13篇
力学   44篇
数学   167篇
物理学   491篇
  2023年   11篇
  2022年   16篇
  2021年   34篇
  2020年   28篇
  2019年   34篇
  2018年   20篇
  2017年   23篇
  2016年   57篇
  2015年   57篇
  2014年   63篇
  2013年   114篇
  2012年   102篇
  2011年   133篇
  2010年   77篇
  2009年   74篇
  2008年   110篇
  2007年   106篇
  2006年   82篇
  2005年   73篇
  2004年   72篇
  2003年   52篇
  2002年   67篇
  2001年   42篇
  2000年   65篇
  1999年   28篇
  1998年   35篇
  1997年   24篇
  1996年   24篇
  1995年   36篇
  1994年   33篇
  1993年   34篇
  1992年   32篇
  1991年   36篇
  1990年   33篇
  1989年   21篇
  1988年   24篇
  1987年   21篇
  1986年   20篇
  1985年   26篇
  1984年   25篇
  1983年   17篇
  1982年   16篇
  1981年   16篇
  1980年   9篇
  1979年   6篇
  1978年   6篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1974年   6篇
排序方式: 共有2085条查询结果,搜索用时 0 毫秒
31.
Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers, in which the establishing of a Fulde‐Ferrell Larkin‐Ovchinnikov (FFLO) like state leads to interference effects of the superconducting pairing wave function, form the core of the superconducting spin valve. The realization of strong critical temperature oscillations in such trilayers, as a function of the ferromagnetic layer thicknesses or, even more efficient, reentrant superconductivity, are the key condition to obtain a large spin valve effect, i.e. a large shift in the critical temperature. Both phenomena have been realized experimentally in the Cu41Ni59/Nb/Cu41Ni59 trilayers investigated in the present work.  相似文献   
32.
33.
One of the most pervasive laws in biology is the allometric scaling, whereby a biological variable Y is related to the mass M of the organism by a power law, Y=Y0Mb, where b is the so-called allometric exponent. The origin of these power laws is still a matter of dispute mainly because biological laws, in general, do not follow from physical ones in a simple manner. In this work, we review the interspecific allometry of metabolic rates, where recent progress in the understanding of the interplay between geometrical, physical and biological constraints has been achieved.

For many years, it was a universal belief that the basal metabolic rate (BMR) of all organisms is described by Kleiber's law (allometric exponent b=3/4). A few years ago, a theoretical basis for this law was proposed, based on a resource distribution network common to all organisms. Nevertheless, the 3/4-law has been questioned recently. First, there is an ongoing debate as to whether the empirical value of b is 3/4 or 2/3, or even nonuniversal. Second, some mathematical and conceptual errors were found these network models, weakening the proposed theoretical arguments. Another pertinent observation is that the maximal aerobically sustained metabolic rate of endotherms scales with an exponent larger than that of BMR. Here we present a critical discussion of the theoretical models proposed to explain the scaling of metabolic rates, and compare the predicted exponents with a review of the experimental literature. Our main conclusion is that although there is not a universal exponent, it should be possible to develop a unified theory for the common origin of the allometric scaling laws of metabolism.  相似文献   

34.
35.
Despite the importance of a complete characterization of dendritic patterns in castings, the availability of studies on the development of tertiary dendrite arms is scarce in the literature. In the present study, the tip cooling rate, local solidification time, primary and tertiary dendrite arm spacings have been determined in Pb–Sb alloys castings directionally solidified under unsteady-state heat flow conditions. The alloys compositions experimentally examined are widely used in the as-cast condition for the manufacture of positive and negative grids of lead-acid batteries. The initial growth of tertiary dendritic arms from the secondary branches was found to occur only for a Pb–3.5 wt% Sb alloy at cooling rates in the range 0.4–0.2?K/s, with no evidence of this spacing pattern for Pb–Sb alloys having lower solute content. Tertiary dendritic branches have been observed along the entire casting lengths for alloys of the Pb–Sb hypoeutectic range having compositions higher than 4.0 wt% Sb. It is shown that a power function experimental law with a characteristic ?0.55 exponent is able to characterize the tertiary spacing evolution with the solidification cooling rate for alloys compositions ≥4.0 wt% Sb. The only exception was the Pb–3.5 wt% Sb alloy for which λ 3 exhibited significant lower values when compared with the experimental values obtained for the other Pb–Sb alloys for a same solidification cooling rate.  相似文献   
36.
We observe a signal for the doubly charmed baryon Xi(+)(cc) in the charged decay mode Xi(+)(cc)-->Lambda(+)(c)K-pi(+) in data from SELEX, the charm hadroproduction experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1+/-0.5 events, a statistical significance of 6.3sigma. The observed mass of this state is 3519+/-1 MeV/c(2). The Gaussian mass width of this state is 3 MeV/c(2), consistent with resolution; its lifetime is less than 33 fs at 90% confidence.  相似文献   
37.
38.
Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow velocity inside the porous medium, fluid dispersion and flow tracing of fluid.  相似文献   
39.
The problem of extracting quantitative information on individual particle properties from spectroscopic measurements conducted at concentrations where particle interactions become significant is of great industrial and theoretical importance. For dispersions of charged particles, this can happen at fairly low concentrations. The effect of the fluid (slurry) structure has to be taken into account to interpret the light scattering spectra of such dispersions. In this paper, a hybrid method that addresses the effect of the fluid structure is proposed. The hybrid approach describes the fluid structure by relating the “effective” Percus‐Yevick hard‐sphere parameters to the system parameters using empirical models. The feasibility of this approach is examined through a theoretical study with data generated by Monte Carlo simulations of a monodisperse dispersion of charged spherical particles using realistic interaction potentials under single scattering conditions.  相似文献   
40.
We present a novel concept for microscopic imaging. The proposed microscope-like device does not include an objective lens neither a condenser. Instead, a metallic plate of sub-wavelength hole-array with a varying pitch is used to illuminate the inspected object that is mounted very close to it. As a result, the transmitted spectrum through each hole differs from the others and therefore, each spot of the detected object is illuminated with a unique spectrum. By measuring a single spectrum that is the sum of all the spectra that are transmitted through the sample and by using spectral decomposition algorithms, the spatial transmission pattern of the object can be extracted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号