首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
化学   77篇
数学   11篇
物理学   12篇
  2023年   4篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2019年   5篇
  2018年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   10篇
  2011年   5篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1977年   1篇
  1975年   1篇
  1972年   2篇
排序方式: 共有100条查询结果,搜索用时 0 毫秒
71.
In recent years, attention has been turned finding new sources of phenolic compounds, antioxidant molecules, main by-products from the agri-food chain like barley malt rootlets (BMRs). Traditionally, phenolic compounds are extracted from food matrices using different procedures, for example, solid–liquid, liquid–liquid, or solid-phase extraction techniques employing organic solvents. With the advent of green chemistry, attention has been paid to the search for green, nontoxic, inexpensive, and nonflammable solvents and the natural deep eutectic solvents (NADESs) respect these characteristics. The aim of this project was to develop and optimize an environmentally friendly, inexpensive, and rapid extraction method for phenolic compounds from BMRs using natural DESs as extractive solvents. Several natural DESs were tested as extractive solvents and, among them, the best results in terms of total phenolic content were obtained using a choline chloride-malic acid (1:2 molar ratio)-based mixture. Box–Behnken experimental design guaranteed the extraction of 9.51 ± 0.83 gallic acid equivalent/g of BMRs, under the following optimal extraction conditions: 1:21 solid-to-liquid ratio, 80°C as extraction temperature, 43 min as the time of extraction, and 29% as a percentage of added water in the NADESs. Phenolic acids and flavonoids were detected in the BMRs extract through HPLC-PDA/MS analysis.  相似文献   
72.
Daunne Christa PD Dr. 《ZDM》2003,35(3):102-109
It is reported about a longitudinal study run at the Institute of Cognitive Mathematics of the University of Osnabrueck, in which pupils’ verbal and text productions from mathematics lessons at a grammar school are analysed by means of cognitive theoretical methods. First of all, a teaching scene from an instruction to probability calculus and further text productions from an introductory lesson about exponential functions are analysed, in which five pupils take part whose cognitive structures have been assessed and classified in individual examinations. The characteristics brought out according to these teaching scenes indicate different ideas and thinking processes of the pupils. The second part shows that the pupils’ behaviour described is not only to be regarded in isolation but it can also be found in longitudinal examinations and can therefore be considered as a stable, typical characteristic. These results lead to consequences for the planning and design of mathematics lessons based on a well-founded theory of cognition.  相似文献   
73.
The crystal structure of K[BF3(CN)] (Pbcn (Nr. 60) with a = 13.3486(15) b = 6.5239(7) c = 10.0085(11) Å, and eight formula units per unit cell) has been determined and the one of K[BF2(CN)2] was confirmed and improved. The different networks in the complete series of borates K[BFx(CN)4–x], x = 0–4 are compared and discussed.  相似文献   
74.
75.
The stannides ErAgSn and TmAgSn have been investigated under high‐temperature (HT) and high‐pressure (HP) conditions in order to investigate their structural chemistry. ErAgSn and TmAgSn are dimorphic: normal‐pressure (NP) ErAgSn and HT‐TmAgSn crystallize into the NdPtSb type structure, P63mc, a = 466.3(1), c = 729.0(2) pm for NP‐ErAgSn and a = 465.4(1), c = 726.6(2) pm for HT‐TmAgSn. NP‐ErAgSn was obtained via arc‐melting of the elements and subsequent annealing at 970 K, while HT‐TmAgSn crystallized directly from the melt by rapidly quenching the arc‐melted sample. HT‐TmAgSn transforms to the ZrNiAl type low‐temperature modification upon annealing at 970 K. The high‐pressure (HP) modification of ErAgSn was synthesized under multianvil high‐pressure (11.5 GPa) high‐temperature (1420 K) conditions from NP‐ErAgSn: ZrNiAl type, , a = 728.7(2), c = 445.6(1) pm. The silver and tin atoms in NP‐ErAgSn and HT‐TmAgSn build up two‐dimensional, puckered [Ag3Sn3] networks (277 pm intralayer Ag–Sn distance in NP‐ErAgSn) that are charge‐balanced and separated by the erbium and thulium atoms. The fourth neighbor in the adjacent layer has a longer Ag–Sn distance of 298 pm. The [AgSn] network in HP‐ErAgSn is three‐dimensional. Each silver atom has four tin neighbors (281–285 pm Ag–Sn). The [AgSn] network leaves distorted hexagonal channels, which are filled with the erbium atoms. The crystal chemistry of the three phases is discussed.  相似文献   
76.
77.
78.
Herein the syntheses of three novel ligands, in which an azaheterocycle is connected with a thiazole subunit: 4‐methoxy‐5‐methyl‐2‐pyridine‐2‐yl‐1,3‐thiazole ( 1 ), 4‐methoxy‐5‐methyl‐2‐pyrimidine‐2‐yl‐1,3‐thiazole ( 2 ) and 4‐methoxy‐5‐phenyl‐2‐pyridine‐2‐yl‐1,3‐thiazole ( 3 ) are reported. Because these ligands are cyclic versions of 1,4‐diazadienes, they offer good prerequisites for the synthesis of metal complexes and were employed as chelating ligands. Three novel heteroleptic cationic complexes of the type Ru(bpy)2( L ), with bpy = 2,2′‐bipyridine were successfully synthesised. The RuII complexes as well as the ligands were characterised by means of mass spectrometry, NMR, UV/Vis and IR spectroscopy and elemental analysis. Furthermore, an X‐ray structure of Ru(bpy)2 2 (PF6), as far as we know the first example where a thiazole is directly connected to a RuII core, is presented in this paper.  相似文献   
79.
1‐Butyl‐4‐methylpyridinium hexachloridotantalate(V), [BMPy][TaCl6] ( 1 ), tetrakis(1‐butyl‐4‐methylpyridinium) bis(hexachloridotantalate(V) (μ‐oxido)‐decachloridotantalate(V), [BMPy]4[(TaCl6)2(Ta2OCl10)] ( 2 ), and bis(1‐ethyl‐3‐methylimidazolium)‐(μ‐oxido)‐decachloridoditantalate(V), [EMIm]2[Ta2OCl10] ( 3 ) were synthesized and characterized by single‐crystal X‐ray diffraction and vibrational spectroscopy. Compounds 1 and 3 crystallize in the monoclinic space group P21/c (no. 14), whereas compound 2 crystallizes in the triclinic space group P (no. 2). All compounds are built up by the mentioned bulky organic cations and octahedral [TaCl6] respective linear [Ta2OCl10]2– anions. Coulomb interactions are dominant between the ionic species. FT‐IR and FT‐Raman spectra were recorded and interpreted, especially with respect to the inorganic species [TaCl6] (Oh) and [Ta2OCl10]2– (Ci symmetry, approximately D4h). The melting temperatures of compounds 1 – 3 are given.  相似文献   
80.
Dehydropolymerisation of methylamine borane (H3B⋅NMeH2) using the well-known iron amido complex [(PNP)Fe(H)(CO)] (PNP=N(CH2CH2PiPr2)2) ( 1 ) gives poly(aminoborane)s by a chain-growth mechanism. In toluene, rapid dehydrogenation of H3B⋅NMeH2 following first-order behaviour as a limiting case of a more general underlying Michaelis–Menten kinetics is observed, forming aminoborane H2B=NMeH, which selectively couples to give high-molecular-weight poly(aminoborane)s (H2BNMeH)n and only traces of borazine (HBNMe)3 by depolymerisation after full conversion. Based on a series of comparative experiments using structurally related Fe catalysts and dimethylamine borane (H3B⋅NMe2H) polymer formation is proposed to occur by nucleophilic chain growth as reported earlier computationally and experimentally. A silyl functionalised primary borane H3B⋅N(CH2SiMe3)H2 was studied in homo- and co-dehydropolymerisation reactions to give the first examples for Si containing poly(aminoborane)s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号