首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   7篇
化学   180篇
力学   9篇
数学   45篇
物理学   68篇
  2020年   8篇
  2019年   5篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   12篇
  2012年   16篇
  2011年   16篇
  2010年   5篇
  2009年   3篇
  2008年   21篇
  2007年   16篇
  2006年   14篇
  2005年   19篇
  2004年   8篇
  2003年   13篇
  2002年   9篇
  2001年   12篇
  2000年   3篇
  1999年   4篇
  1997年   5篇
  1996年   7篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
  1910年   1篇
排序方式: 共有302条查询结果,搜索用时 0 毫秒
91.
92.
This review article highlights advances made in abiotic anion coordination chemistry in 2000 and 2001. The structure of this review is that similar to the previous reviews in this series that covered 1997, 1998 and 1999 [1 and 2]. The review also includes examples of ion-pair receptors. The first section examines anion receptors that do not contain metal ions. This is followed by a review of metal containing anion receptors in which the metal can function as: (i) a coordination site for the anion; (ii) an agent withdrawing electron density from the receptor; (iii) an organisational element in the receptor; (iv) a sensor; and (v) a co-bound guest in ion-pair receptor. Examples of the role of anions in directing the self-assembly of complex molecular architectures are presented in the final section.  相似文献   
93.
The functionality of a new class of monolithic systems for the controlled release of drugs is discussed. The systems consist of uniformly dispersed particles of osmotically active therapeutic agents (drugs) in biocompatible polymeric matrices. The drug particles are encapsulated by polymers to form a multiplicity of microcapsules throughout the matrix. These osmotic film systems display zero-order drug delivery kinetics. The principal energy source governing the release of agents is osmotic in nature. When such a film is placed in an aqueous infinite sink, the film imbibes water into the outermost layer of the dispersion at a rate dictated by permeability of the polymer. Water transport into the film continues until volumetric rupture of the drug-containing capsules occurs, after which time saturated drug solution is pumped through channels created by the rupture. This process repeats itself in a serial fashion until the system is exhausted of agent. Due to the osmotic functionality of these systems, reduction of the thermodynamic activity of water outside the system can proportionally reduce the release of agent. In this paper the effects of varying drug particle size, osmotic pressure gradients, system area, drug type, polymer type, and temperature upon the drug release kinetics are presented. Application of this new technology has allowed the fabrication of several useful drug therapeutic systems.  相似文献   
94.
95.
It is suggested that the energy difference between the Gamow-Teller and Fermi resonances is given in units of MeV, by EGT?EF=26A?13?18.5 (N ? Z)/A. The consequences of this result on the strength of the spin and isospin-dependent residual interaction, as well as on the effective axial-vector coupling constant, are discussed.  相似文献   
96.
97.
The vibrational relaxation time of the nH2 molecule has been measured as a function of density and temperature between 25 and 40 K in the gas and liquid phase, and at fixed density in the solid and liquid near the fusion point.  相似文献   
98.
A systematic computational study of gallophosphates was undertaken. First, lattice energy minimization calculations using a formal-charge shell model potential have been carried out on a series of hypothetical gallium phosphates derived from their metallogallophosphate, aluminophosphate, or aluminosilicate analogues through atomic substitution. The minimized structures show the typical features in terms of bond angles and distances as expected in zeolitic gallophosphates. Second, the crystal structures of several gallophosphates in their calcined forms have been predicted, using for each compound lattice energy minimization and an initial model derived from its as-synthesized templated form. All the modified structures thus have the same GaPO(4) composition. The lattice energies of all the simulated gallophosphate structures were compared to that of GaPO(4)-quartz as a reference structure. Interestingly, among all predicted calcined structures, various zeolitic topologies were found. The study of the energetics of these zeotypic structures showed a linear dependence of lattice energy upon density. Strikingly, a few simulated structures showed unrealistic structural features, such as important framework distortions, often associated with the occurrence of a hexameric unit in the original as-synthesized structures. Also, those gallophosphates with structural faults were found in the upper part of the energy/density plot. To address the validity of our force field calculations in these special cases, first principles calculations were undertaken on ULM-4, chosen as a typical representative structure. Indeed, the qualitative agreement found between our results and those obtained with the nonlocal density functional theory demonstrates the robustness of our force field. Further minimization also showed that the inclusion of polarizability is crucial for yielding results comparable with those obtained using first principles methods.  相似文献   
99.
Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of the superoxide radical to O(2) and H(2)O(2) utilizing the Ni(III/II) redox couple. The Ni center in Ni-SOD resides in an unusual coordination environment that is distinct from other SODs. In the reduced state (Ni-SOD(red)), Ni(II) is ligated to a primary amine-N from His1, anionic carboxamido-N/thiolato-S from Cys2, and a second thiolato-S from Cys6 to complete a NiN(2)S(2) square-planar coordination motif. Utilizing the dipeptide N(2)S(2-) ligand, H(2)N-Gly-l-Cys-OMe (GC-OMeH(2)), an accurate model of the structural and electronic contributions provided by His1 and Cys2 in Ni-SOD(red), we constructed the dinuclear sulfur-bridged metallosynthon, [Ni(2)(GC-OMe)(2)] (1). From 1 we prepared the following monomeric Ni(II)-N(2)S(2) complexes: K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)] (2), K[Ni(GC-OMe)(S(t)Bu)] (3), K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)] (4), and K[Ni(GC-OMe)(SNAc)] (5). The design strategy in utilizing GC-OMe(2-) is analogous to one which we reported before (see Inorg. Chem. 2009, 48, 5620 and Inorg. Chem. 2010, 49, 7080) where Ni-SOD(red) active site mimics can be assembled at will with electronically variant RS(-) ligands. Discussed herein is our initial account pertaining to the aqueous behavior of isolable, small-molecule Ni-SOD model complexes (non-maquette based). Spectroscopic (FTIR, UV-vis, ESI-MS, XAS) and electrochemical (CV) measurements suggest that 2-5 successfully simulate many of the electronic features of Ni-SOD(red). Furthermore, the aqueous studies reveal a dynamic behavior with regard to RS(-) lability and bridging interactions, suggesting a stabilizing role brought about by the protein architecture.  相似文献   
100.
NMR titration studies in acetonitrile-d(3)/DMSO-d(6) mixtures demonstrate that diindolylurea-based receptors can form complexes with the organophosphorus nerve agent soman in organic solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号