首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   2篇
化学   17篇
晶体学   1篇
数学   5篇
物理学   9篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2011年   4篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
Complexes of the early lanthanides with the donor-functionalized alkoxide ligand mmp (Hmmp = HOCMe(2)CH(2)OMe, 1-methoxy-2-methylpropan-2-ol) are excellent precursors for Metal Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition (ALD) of lanthanide oxides; however, their coordination chemistry, which is the subject of this paper, is rather complex. Precursors for MOCVD and ALD of lanthanide oxides are prepared by the reaction of [Ln{N(SiMe(3))(2)}(3)] with 3 equiv of the alcohol Hmmp in toluene in the presence of 1 equiv of tetraglyme and are indefinitely stable in solution. Reaction of [Ln{N(SiMe(3))(2)}(3)] with 3 equiv of Hmmp in the absence of stabilizing Lewis bases gives complex condensed products with empirical formula [{Ln(mmp)(3-n)}(2)O(n)]. These condensed products show poor volatility and are unsatisfactory precursors for MOCVD or ALD of oxides. The cluster complex [La(3)(mu(3),kappa(2)-mmp)(2)(mu(2),kappa(2)-mmp)(3)(mmp)(4)] has been prepared by careful reaction of [La{N(SiMe(3))(2)}(3)] with 4 equiv of Hmmp and has been characterized by single-crystal X-ray diffraction. Salt metathesis reactions using M(mmp) (M = Li or Na) are unreliable routes to [Ln(mmp)(3)]. Crystals of the heterometallic cluster complex [NaLa(3)(mu(3)-OH)(mu(3),kappa(2)-mmp)(2)(mu(2),kappa(2)-mmp)(4)(mmp)(3)] were isolated from the reaction of [La(NO(3))(3)(tetraglyme)] with 3 equiv of Na(mmp), and crystals of [Li(kappa(2)-Hmmp)Pr(mu(2),eta(2)-mmp)(4))LiCl] were isolated from the reaction of PrCl(3) with 3 equiv of Li(mmp); both of these complexes have been characterized by single-crystal X-ray diffraction.  相似文献   
32.

Purpose

To assess the feasibility of full diffusional kurtosis tensor imaging (DKI) in prostate MRI in clinical routine. Histopathological correlation was achieved by targeted biopsy.

Materials and Methods

Thirty-one men were prospectively included in the study. Twenty-one were referred to our hospital with increased prostate specific antigen (PSA) values (> 4 ng/ml) and suspicion of prostate cancer. The other 10 men were volunteers without any history of prostate disease. DKI applying diffusion gradients in 20 different spatial directions with four b-values (0, 300, 600, 1000 s/mm2) was performed additionally to standard functional prostate MRI. Region of interest (ROI)-based measurements were performed in all histopathologically verified lesions of every patient, as well as in the peripheral zone, and the central gland of each volunteer.

Results

DKI showed a substantially better fit to the diffusion-weighted signal than the monoexponential apparent diffusion coefficient (ADC). Altogether, 29 lesions were biopsied in 14 different patients with the following results: Gleason score 3 + 3 = 6 (n = 1), 3 + 4 = 7 (n = 7), 4 + 3 = 7 (n = 6), 4 + 4 = 8 (n = 1), and 4 + 5 = 9 (n = 2), and prostatitis (n = 12). Values of axial (Kax) and mean kurtosis (Kmean) were significantly different in the tumor (Kax 1.78 ± 0.39, Kmean 1.84 ± 0.43) compared with the normal peripheral zone (Kax 1.09 ± 0.12, Kmean 1.16 ± 0.13; p < 0.001) or the central gland (Kax 1.40 ± 0.12, Kmean 1.44 ± 0.17; p = 0.01 respectively). There was a minor correlation between axial kurtosis (r = 0.19) and the Gleason score.

Conclusion

Full DKI is feasible to utilize in a routine clinical setting. Although there is some overlap some DKI parameters can significantly distinguish prostate cancer from the central gland or the normal peripheral zone. Nevertheless, the additional value of DKI compared with conventional monoexponential ADC calculation remains questionable and requires further research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号