首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   15篇
  国内免费   5篇
化学   335篇
晶体学   1篇
力学   14篇
数学   71篇
物理学   39篇
  2022年   8篇
  2021年   8篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   10篇
  2014年   17篇
  2013年   27篇
  2012年   11篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   20篇
  2007年   30篇
  2006年   38篇
  2005年   34篇
  2004年   19篇
  2003年   11篇
  2002年   14篇
  2001年   4篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   10篇
  1976年   2篇
  1975年   7篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有460条查询结果,搜索用时 9 毫秒
41.
We describe and test a novel molecular dynamics method which combines quantum-mechanical embedding and classical force model optimization into a unified scheme free of the boundary region, and the transferability problems which these techniques, taken separately, involve. The scheme is based on the idea of augmenting a unique, simple parametrized force model by incorporating in it, at run time, the quantum-mechanical information necessary to ensure accurate trajectories. The scheme is tested on a number of silicon systems composed of up to approximately 200 000 atoms.  相似文献   
42.
The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.  相似文献   
43.
Considering a two DoF system subject to digital position control, of interest for robotic application, we analyze the dynamics of the system at the intersection of two loci of Neimark–Sacker bifurcations, where a double Neimark–Sacker bifurcation is taking place. In the system, the saturation of the control force is the only nonlinear term considered, other than this, the system is piecewise linear. Starting from the analytical investigation already performed in Part I (Habib et al. in Nonlin. Dyn., under review, 2013), in this paper the effects of an asymmetry of the saturation of the control force are investigated, both analytically and numerically. The results show the increasing complexity of the dynamics for a more and more asymmetric system. First, the asymmetry is making the bifurcation transit from supercritical to subcritical, then it generates a stable torus that breaks down into a strange attractor, associated with a chaotic motion. In the last part of the paper, the torus breakdown and the onset of chaos are investigated, furthermore the evolution of complex dynamics through regions of phase locking and higher-dimensional chaos is outlined.  相似文献   
44.
Three methods for the preparation of N-substituted 2H-3,1-benzoxazine-2,4(1H)diones (isatoic anhydrides) (1) utilizing 2-chloro-, 2-nitrobenzoic acids and N-unsubstituted isatoic anhydrides as starting materials, are described.  相似文献   
45.
The mechanism that controls bond breaking at transition metal surfaces has been studied with sum frequency generation (SFG), scanning tunneling microscopy (STM), and catalytic nanodiodes operating under the high-pressure conditions. The combination of these techniques permits us to understand the role of surface defects, surface diffusion, and hot electrons in dynamics of surface catalyzed reactions. Sum frequency generation vibrational spectroscopy and kinetic measurements were performed under 1.5 Torr of cyclohexene hydrogenation/dehydrogenation in the presence and absence of H(2) and over the temperature range 300-500 K on the Pt(100) and Pt(111) surfaces. The structure specificity of the Pt(100) and Pt(111) surfaces is exhibited by the surface species present during reaction. On Pt(100), pi-allyl c-C6H9, cyclohexyl (C6H11), and 1,4-cyclohexadiene are identified adsorbates, while on the Pt(111) surface, pi-allyl c-C6H9, 1,4-cyclohexadiene, and 1,3-cyclohexadiene are present. A scanning tunneling microscope that can be operated at high pressures and temperatures was used to study the Pt(111) surface during the catalytic hydrogenation/dehydrogenation of cyclohexene and its poisoning with CO. It was found that catalytically active surfaces were always disordered, while ordered surface were always catalytically deactivated. Only in the case of the CO poisoning at 350 K was a surface with a mobile adsorbed monolayer not catalytically active. From these results, a CO-dominated mobile overlayer that prevents reactant adsorption was proposed. By using the catalytic nanodiode, we detected the continuous flow of hot electron currents that is induced by the exothermic catalytic reaction. During the platinum-catalyzed oxidation of carbon monoxide, we monitored the flow of hot electrons over several hours using a metal-semiconductor Schottky diode composed of Pt and TiO2. The thickness of the Pt film used as the catalyst was 5 nm, less than the electron mean free path, resulting in the ballistic transport of hot electrons through the metal. The electron flow was detected as a chemicurrent if the excess electron kinetic energy generated by the exothermic reaction was larger than the effective Schottky barrier formed at the metal-semiconductor interface. The measurement of continuous chemicurrent indicated that chemical energy of exothermic catalytic reaction was directly converted into hot electron flux in the catalytic nanodiode. We found the chemicurrent was well-correlated with the turnover rate of CO oxidation separately measured by gas chromatography.  相似文献   
46.
We propose a 2-approximation algorithm for a facility location problem with stochastic demands. At open facilities, inventory is kept such that arriving requests find a zero inventory with (at most) some pre-specified probability. Costs incurred are expected transportation costs, facility operating costs and inventory costs.  相似文献   
47.
48.
49.
A natural Riemannian geometry is defined on the state space of a finite quantum system by means of the Bogoliubov scalar product which is infinitesimally induced by the (nonsymmetric) relative entropy functional. The basic geometrical quantities, including sectional curvatures, are computed for a two-level quantum system. It is found that the real density matrices form a totally geodesic submanifold and the von Neumann entropy is a monotone function of the scalar curvature. Furthermore, we establish information inequalities extending the Cramér-Rao inequality of classical statistics. These are based on a very general new form of the logarithmic derivative.This work was supported by the Hungarian National Foundation for Scientific Research, grant No. 1900. Authors' e-mail addresses are: H1128PET@ella.hu and TOTH@zodiac.rutgers.edu.  相似文献   
50.
This article mainly concerns the synthesis of novel PD5/PDMS conetworks by the copolymerization of cyclic D5H and linear HO? PDMS? OH units, and the characterization of the product by DMTA, DSC, and TGA. The ultimate properties of the conetworks may be controlled by varying the relative composition of D5H and PDMS components. DMTA and DSC thermograms indicate compatibility between the PD5 and PDMS domains. Understanding of the polymer chemical transformations involved in conetwork formation combined with an analysis of DMTA and DSC thermograms led to a proposition of the microarchitecture of PD5/PDMS conetworks. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 630–637, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号