首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   15篇
  国内免费   5篇
化学   335篇
晶体学   1篇
力学   14篇
数学   71篇
物理学   39篇
  2022年   8篇
  2021年   8篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   10篇
  2014年   17篇
  2013年   27篇
  2012年   11篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   20篇
  2007年   30篇
  2006年   38篇
  2005年   34篇
  2004年   19篇
  2003年   11篇
  2002年   14篇
  2001年   4篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   10篇
  1976年   2篇
  1975年   7篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有460条查询结果,搜索用时 15 毫秒
11.
12.
By checking the chemistry underlying the concept of “supramolecular cluster catalysis” we identified two major errors in our publications related to this topic, which are essentially due to contamination problems. (1) The conversion of the “closed” cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ (1) into the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), which we had ascribed to a reaction with water in the presence of ethylbenzene is simply an oxidation reaction which occurs in the presence of air. (2) The higher catalytic activity observed with ethylbenzene, which we had erroneously attributed to the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), was due to the formation of RuO2 · nH2O, caused by a hydroperoxide contamination present in ethylbenzene.  相似文献   
13.
Three methods for the preparation of N-substituted 2H-3,1-benzoxazine-2,4(1H)diones (isatoic anhydrides) (1) utilizing 2-chloro-, 2-nitrobenzoic acids and N-unsubstituted isatoic anhydrides as starting materials, are described.  相似文献   
14.
Nitrogen dioxide ((*)NO(2)) participates in a variety of biological reactions. Of great interest are the reactions of (*)NO(2) with oxymyoglobin and oxyhemoglobin, which are the predominant hemeproteins in biological systems. Although these reactions occur rapidly during the nitrite-catalyzed autoxidation of hemeproteins, their roles in systems producing (*)NO(2) in the presence of these hemeproteins have been greatly underestimated. In the present study, we employed pulse radiolysis to study directly the kinetics and mechanism of the reaction of oxymyoglobin (MbFe(II)O(2)) with (*)NO(2). The rate constant of this reaction was determined to be (4.5 +/- 0.3) x 10(7) M(-1)s(-1), and is among the highest rate constants measured for (*)NO(2) with any biomolecule at pH 7.4. The interconversion among the various oxidation states of myoglobin that is prompted by nitrogen oxide species is remarkable. The reaction of MbFe(II)O(2) with (*)NO(2) forms MbFe(III)OONO(2), which undergoes rapid heterolysis along the O-O bond to yield MbFe(V)=O and NO(3-). The perferryl-myoglobin (MbFe(V)=O) transforms rapidly into the ferryl species that has a radical site on the globin ((*)MbFe(IV)=O). The latter oxidizes another oxymyoglobin (10(4) M(-1)s(-1) < k(17) < 10(7) M(-1)s(-1)) and generates equal amounts of ferrylmyoglobin and metmyoglobin. At much longer times, the ferrylmyoglobin disappears through a relatively slow comproportionation with oxymyoglobin (k(18) = 21.3 +/- 5.3 M(-1)s(-1)). Eventually, each (*)NO(2) radical converts three oxymyoglobin molecules into metmyoglobin. The same intermediate, namely MbFe(III)OONO(2), is also formed via the reaction peroxynitrate (O(2)NOO(-)/O(2)NOOH) with metmyoglobin (k(19) = (4.6 +/- 0.3) x 10(4) M(-1)s(-1)). The reaction of (*)NO(2) with ferrylmyoglobin (k(20) = (1.2 +/- 0.2) x 10(7) M(-1)s(-1)) yields MbFe(III)ONO(2), which in turn dissociates (k(21) = 190 +/- 20 s(-1)) into metmyoglobin and NO(3-). This rate constant was found to be the same as that measured for the decay of the intermediate formed in the reaction of MbFe(II)O(2) with (*)NO, which suggests that MbFe(III)ONO(2) is the intermediate observed in both processes. This conclusion is supported by thermokinetic arguments. The present results suggest that hemeproteins may detoxify (*)NO(2) and thus preempt deleterious processes, such as nitration of proteins. Such a possibility is substantiated by the observation that the reactions of (*)NO(2) with the various oxidation states of myoglobin lead to the formation of metmyoglobin, which, though not functional in the gas transport, is nevertheless nontoxic at physiological pH.  相似文献   
15.
This article is a critical analysis of kinetic dataavailable on carbocationic polymerizations. A survey of published propagation rate constant (kp) data revealed several orders of magnitude differences. In this article, an explanation of this apparent discrepancy is offered with a case study involving the carbocationic polymerization of 2,4,6‐trimethylstyrene (TMS). With the polymerization mechanism originally proposed for this system, kp = 1.35 × 104 L mol?1 s?1 was extracted from experimental data with the Predici polyreaction package. The alternative mechanism yielded kp = 1.01 × 107 L mol?1 s?1, close to that predicted by Mayr's Linear Free Energy Relationship (LFER). We propose that true rate constants can only be obtained from direct competition experiments or from kinetic interpretation based on independently proven mechanisms. The second part of this review discusses critical analysis of the temperature and concentration dependence of various living IB systems. Comparison of the temperature dependence in systems initiated with 2‐ chloro‐2,4, 4‐ trimethylpentane (TMPCl)/TiCl4 from various laboratories yielded of ΔH ~?25 and ?34.5 kJ/mol for high and low TMPCl/TiCl4 ratios, respectively. Aromatic (cumyl‐type) initiators show ΔH ~ ?40 kJ/mol, whereas H2O/TiCl4 in the presence of the strong electron‐ pair donor dimethylacetamide gave ΔH = ?12 kJ/mol. The significant differences indicate different underlying mechanisms with complex elementary reactions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5394–5413, 2005  相似文献   
16.
The fluorescence emission from complex chemical and biological samples can be resolved by measuring the frequency-response of the emission, which is now possible from 1 to 2000 MHz. The frequency-response allows determination of the components in a mixture, construction of time-resolved emission spectra, and measurement of the dynamic and hydrodynamic properties of biological macromolecules. The instrumentation is relatively simple, and data acquisition times can be short. At present, this method may be superior to direct measurements of time-resolved fluorescence emission.  相似文献   
17.
Starting from L-malic, L-citramalic, and rac. thiomalic acids routes to L-homoisoserine, 2-methyl-L-homoisoserine and rac. homoisocysteine have been developed. The new orthogonally protected and carboxy-activated building blocks are GABA as well as -hydroxy and -mercapto acid derivatives, suitable for the construction of peptide and depsipeptide surrogates.  相似文献   
18.
Isothiocyanato-functionalized cyanine dyes 7 and 11 for labelling of proteins at amino groups have been synthesized. The dyes and their adducts with amines show strong absorbance and fluorescence in the near-infrared region of 750-850 nm.  相似文献   
19.

Thermal, thermomechanical, and caloric properties of commercial orthodontic wires (produced by Natural Orthodontics Corp., USA) with cylindrical and rectangular geometry were studied. Depending on the applied forces, there were identified the range of elasticity, the elasticity–viscoelasticity coexistence domain and the domain in which a maximum force of 18 N is applied, for the orthodontic wires. When increasing the thickness of orthodontic wires, deformation decreases. The Controlled Force Module, in the tension mode, was used for the determination of the orthodontic wires elongation at application of the stretching forces from 0 to 13 N, at 35 °C, maintaining each static force value for 3 min. The increase in the cross-sectional area of the orthodontic wires disfavors the process of elongation of the sample, at the same applied static force. Using the Multi-Frequency–Strain–Stress modulus, in the tension mode, DMA cyclic heating–cooling measurements were performed. The measured physical quantities for orthodontic wires were Storage Modulus, Loss Modulus, Tanδ and Stiffness, at heating and cooling. Thus, the characteristic temperatures of the phase transitions (As, Af, Ms, Mf), of all the studied orthodontic wires were identified. Also, the values of the elasticity modulus (Young’s Modulus) of the orthodontic wires were calculated at 35 °C. With the DSC Q200 device, using temperature-modulated differential scanning calorimetry method, a multi-step temperature variation program, was applied to a rectangular wire, in three stages (cooling–heating–cooling). Through the interpretation of heat fluxes (reversible, irreversible and total), the phase transitions in the formation of martensite, austenite, but also of the rombohedral phase (R-phase), were identified. Formations of austenite and martensite were also evidenced by the classical DSC method, but the classical DSC method also enabled the R-phase identification. The adherence of some food dyes on the orthodontic wires, as well as the modification of the surface roughness of the orthodontic wire after the deposition of the food dye, was also studied. By magnetic measurements, it was established that the orthodontic wires had paramagnetic properties at room temperature, and nitinol was a mixture of 49.2% austenite and 50.8% martensite.

  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号