全文获取类型
收费全文 | 101935篇 |
免费 | 6188篇 |
国内免费 | 5724篇 |
专业分类
化学 | 58290篇 |
晶体学 | 1483篇 |
力学 | 5801篇 |
综合类 | 436篇 |
数学 | 12273篇 |
物理学 | 35564篇 |
出版年
2023年 | 767篇 |
2022年 | 1812篇 |
2021年 | 2203篇 |
2020年 | 2393篇 |
2019年 | 2581篇 |
2018年 | 2983篇 |
2017年 | 2976篇 |
2016年 | 3567篇 |
2015年 | 2555篇 |
2014年 | 3653篇 |
2013年 | 5159篇 |
2012年 | 5236篇 |
2011年 | 5549篇 |
2010年 | 4464篇 |
2009年 | 4507篇 |
2008年 | 4769篇 |
2007年 | 4444篇 |
2006年 | 4083篇 |
2005年 | 3649篇 |
2004年 | 3214篇 |
2003年 | 2840篇 |
2002年 | 2991篇 |
2001年 | 2684篇 |
2000年 | 2157篇 |
1999年 | 1704篇 |
1998年 | 1594篇 |
1997年 | 1362篇 |
1996年 | 1331篇 |
1995年 | 1121篇 |
1994年 | 1185篇 |
1993年 | 1146篇 |
1992年 | 1086篇 |
1991年 | 1161篇 |
1990年 | 1148篇 |
1989年 | 1072篇 |
1988年 | 952篇 |
1987年 | 947篇 |
1986年 | 896篇 |
1985年 | 930篇 |
1984年 | 932篇 |
1983年 | 838篇 |
1982年 | 819篇 |
1979年 | 817篇 |
1978年 | 818篇 |
1977年 | 808篇 |
1976年 | 922篇 |
1975年 | 814篇 |
1974年 | 845篇 |
1973年 | 849篇 |
1972年 | 752篇 |
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
991.
Xuan Zhao Jiqing Fang Yu Jia Zi Wu Meihui Zhang Mingyu Xia Jinhua Dong 《Molecules (Basel, Switzerland)》2022,27(11)
A series of 1,7-diphenyl-1,4-heptadien-3-ones with various substituents (HO-, CH3O-, CH3-, Cl-) on the phenyl rings were synthesized and evaluated for anti-neuroinflammatory effects in LPS-stimulated BV2 microglia. The pharmacological results showed that the target compounds bearing methoxy groups greatly inhibited LPS-induced NO release, and that the active compounds CU-19 and CU-21 reduced the level of NO, TNF-α, IL-6 and PGE-2, downregulated the expression of COX-2 and iNOS in LPS-stimulated BV2 cells. A study of the mechanism of action revealed that CU-19 and CU-21 inhibited the nuclear translocation of NF-κB and phosphorylation of MAPKs (ERK, JNK, and p38). A preliminary pharmacokinetic study in rats revealed that the pharmacokinetic properties of CU-19 and CU-21 were dramatically ameliorated in comparison with the pharmacokinetic properties of curcumin. 相似文献
992.
Tingjunhong Ni Zichao Ding Fei Xie Yumeng Hao Junhe Bao Jingxiang Zhang Shichong Yu Yuanying Jiang Dazhi Zhang 《Molecules (Basel, Switzerland)》2022,27(11)
A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, compounds 5k and 6c showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625 μg/mL), C. neoformans (MIC = 0.125, 0.0625 μg/mL), and A. fumigatus (MIC = 8.0, 4.0 μg/mL). Compound 6c also exerted superior activity to compound 5k and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that 6c could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that compound 6c deserves further investigation. 相似文献
993.
994.
Mesoscale structures that form in gas-solid flows considerably affect interphase heat transfer.A filtered interphase heat transfer model accounts for the effect... 相似文献
995.
Jie Tang Yang Yang Jingjing Qu Wenhuang Ban Hao Song Zhengying Gu Yannan Yang Larry Cai Shevanuja Theivendran Yue Wang Min Zhang Chengzhong Yu 《Chemical science》2022,13(29):8507
Pyroptosis is a programmed cell death widely studied in cancer cells for tumour inhibition, but rarely in dendritic cell (DC) activation for vaccine development. Here, we report the synthesis of sodium stabilized mesoporous aluminosilicate nanoparticles as DC pyroptosis modulators and antigen carriers. By surface modification of sodium-stabilized four-coordinate aluminium species on dendritic mesoporous silica nanoparticles, the resultant Na-IVAl-DMSN significantly activated DC through caspase-1 dependent pyroptosis via pH responsive intracellular ion exchange. The released proinflammatory cellular contents further mediated DC hyperactivation with prolonged cytokine release. In vivo studies showed that Na-IVAl-DMSN induced enhanced cellular immunity mediated by natural killer (NK) cells, cytotoxic T cells, and memory T cells as well as humoral immune response. Our results provide a new principle for the design of next-generation nanoadjuvants for vaccine applications.Na-IVAl-DMSN acts as both antigen carriers and modulators to “hyperactivate” dendritic cells (DCs) via potassium (K+) efflux dependent pyroptosis, eventually leading to enhanced adaptive and innate immunity. 相似文献
996.
This paper reports the development and validation of an assay for the determination of acetonitrile in the recycled mobile phase using high performance liquid chromatography(HPLC). The method is based on that the retention in reversed-phase liquid chromatography increases with decreasing concentration of organic phase in the mobile phase. The natural logarithm of the capacity ratio for a given solute is linearly related to the volume fraction of the organic modifier in the mobile phase. For dimethylphthalate and diethylphthalate, the linearity range is 30%--60%, and for biphenyl and terphenyl, the range is 60%--95%. Precision values(RSD) were both 〈1% and the accuracy(RE) was in the range of ±1%. The assay was successfully applied to the determination of acetonitrile concentration of recycled mobile phase after the distillation of the column eluent in our laboratory. 相似文献
997.
Facile construction of functional nanomaterials with laccase-like activity is important in sustainable chemistry since laccase is featured as an efficient and promising catalyst especially for phenolic degradation but still has the challenges of high cost, low activity, poor stability and unsatisfied recyclability. In this paper, we report a simple method to synthesize nanozymes with enhanced laccase-like activity by the self-assembly of copper ions with various imidazole derivatives. In the case of 1-methylimidazole as the ligand, the as-synthesized nanozyme (denoted as Cu-MIM) has the highest yield and best activity among the nanozymes prepared. Compared to laccase, the Km of Cu-MIM nanozyme to phenol is much lower, and the vmax is 6.8 times higher. In addition, Cu-MIM maintains excellent stability in a variety of harsh environments, such as high pH, high temperature, high salt concentration, organic solvents and long-term storage. Based on the Cu-MIM nanozyme, we established a method for quantitatively detecting phenol concentration through a smartphone, which is believed to have important applications in environmental protection, pollutant detection and other fields. 相似文献
998.
Fangjun Liu Dun Wang Jiaqi Wang Liwei Ma Cuiyun Yu Hua Wei 《Molecules (Basel, Switzerland)》2022,27(9)
Bottlebrush copolymers with different chemical structures and compositions as well as diverse architectures represent an important kind of material for various applications, such as biomedical devices. To our knowledge, zwitterionic conjugated bottlebrush copolymers integrating fluorescence imaging and tumor microenvironment-specific responsiveness for efficient intracellular drug release have been rarely reported, likely because of the lack of an efficient synthetic approach. For this purpose, in this study, we reported the successful preparation of well-defined theranostic zwitterionic bottlebrush copolymers with unique brush-on-brush architecture. Specifically, the bottlebrush copolymers were composed of a fluorescent backbone of polyfluorene derivate (PFONPN) possessing the fluorescence resonance energy transfer with doxorubicin (DOX), primary brushes of poly(2-hydroxyethyl methacrylate) (PHEMA), and secondary graft brushes of an enzyme-degradable polytyrosine (PTyr) block as well as a zwitterionic poly(oligo (ethylene glycol) monomethyl ether methacrylate-co-sulfobetaine methacrylate) (P(OEGMA-co-SBMA)) chain with super hydrophilicity and highly antifouling ability via elegant integration of Suzuki coupling, NCA ROP and ATRP techniques. Notably, the resulting bottlebrush copolymer, PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA6-co-SBMA6)2)) (P2) with a lower MW ratio of the hydrophobic side chains of PTyr and hydrophilic side chains of P(OEGMA-co-SBMA) could self-assemble into stabilized unimolecular micelles in an aqueous phase. The resulting unimolecular micelles showed a fluorescence quantum yield of 3.9% that is mainly affected by the pendant phenol groups of PTyr side chains and a drug-loading content (DLC) of approximately 15.4% and entrapment efficiency (EE) of 90.6% for DOX, higher than the other micelle analogs, because of the efficient supramolecular interactions of π–π stacking between the PTyr blocks and drug molecules, as well as the moderate hydrophilic chain length. The fluorescence of the PFONPN backbone enables fluorescence resonance energy transfer (FRET) with DOX and visualization of intracellular trafficking of the theranostic micelles. Most importantly, the drug-loaded micelles showed accelerated drug release in the presence of proteinase K because of the enzyme-triggered degradation of PTyr blocks and subsequent deshielding of P(OEGMA-co-SBMA) corona for micelle destruction. Taken together, we developed an efficient approach for the synthesis of enzyme-responsive theranostic zwitterionic conjugated bottlebrush copolymers with a brush-on-brush architecture, and the resulting theranostic micelles with high DLC and tumor microenvironment-specific responsiveness represent a novel nanoplatform for simultaneous cell image and drug delivery. 相似文献
999.
Yue Jia Tingji Yao Guangcai Ma Qi Xu Xianglong Zhao Hui Ding Xiaoxuan Wei Haiying Yu Zhiguo Wang 《Molecules (Basel, Switzerland)》2022,27(9)
Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites. 相似文献
1000.
Shiou-Shiow Farn Yen-Buo Lai Kuo-Fong Hua Hsiang-Ping Chen Tzu-Yi Yu Sheng-Nan Lo Li-Hsin Shen Rong-Jiun Sheu Chung-Shan Yu 《Molecules (Basel, Switzerland)》2022,27(9)
A small fenbufen library comprising 18 compounds was prepared via Suzuki Miyara coupling. The five-step preparations deliver 9–17% biphenyl compounds in total yield. These fenbufen analogs exert insignificant activity against the IL-1 release as well as inhibiting cyclooxygenase 2 considerably. Both the para-amino and para-hydroxy mono substituents display the most substantial COX-2 inhibition, particularly the latter one showing a comparable activity as celecoxib. The most COX-2 selective and bioactive disubstituted compound encompasses one electron-withdrawing methyl and one electron-donating fluoro groups in one arene. COX-2 is selective but not COX-2 to bioactive compounds that contain both two electron-withdrawing groups; disubstituted analogs with both resonance-formable electron-donating dihydroxy groups display high COX-2 activity but inferior COX-2 selectivity. In silico simulation and modeling for three COX-2 active—p-fluoro, p-hydroxy and p-amino—fenbufens show a preferable docking to COX-2 than COX-1. The most stabilization by the p-hydroxy fenbufen with COX-2 predicted by theoretical simulation is consistent with its prominent COX-2 inhibition resulting from experiments. 相似文献