全文获取类型
收费全文 | 1711篇 |
免费 | 49篇 |
国内免费 | 18篇 |
专业分类
化学 | 1075篇 |
晶体学 | 39篇 |
力学 | 99篇 |
数学 | 188篇 |
物理学 | 377篇 |
出版年
2024年 | 38篇 |
2023年 | 12篇 |
2022年 | 78篇 |
2021年 | 92篇 |
2020年 | 56篇 |
2019年 | 69篇 |
2018年 | 48篇 |
2017年 | 29篇 |
2016年 | 68篇 |
2015年 | 49篇 |
2014年 | 58篇 |
2013年 | 122篇 |
2012年 | 84篇 |
2011年 | 111篇 |
2010年 | 60篇 |
2009年 | 63篇 |
2008年 | 52篇 |
2007年 | 72篇 |
2006年 | 56篇 |
2005年 | 49篇 |
2004年 | 30篇 |
2003年 | 28篇 |
2002年 | 35篇 |
2001年 | 15篇 |
2000年 | 25篇 |
1999年 | 15篇 |
1998年 | 14篇 |
1997年 | 14篇 |
1996年 | 11篇 |
1995年 | 8篇 |
1994年 | 15篇 |
1993年 | 18篇 |
1992年 | 17篇 |
1991年 | 17篇 |
1990年 | 11篇 |
1989年 | 9篇 |
1988年 | 16篇 |
1987年 | 15篇 |
1986年 | 10篇 |
1985年 | 11篇 |
1984年 | 15篇 |
1983年 | 8篇 |
1982年 | 13篇 |
1981年 | 15篇 |
1980年 | 9篇 |
1979年 | 9篇 |
1977年 | 9篇 |
1976年 | 12篇 |
1975年 | 10篇 |
1967年 | 7篇 |
排序方式: 共有1778条查询结果,搜索用时 15 毫秒
111.
A number of 2-thioxopyrido[3′,2′:4,5]thieno[3,2-H]pyrimdin-4(3H-ones (5) have been synthesized by cyclocondensation of 2-carbethoxy-3-amino-4-phenyl-6-substituted-thieno[2,3-b]pyridines (3) with various isothiocyanates. Compounds 5 were S-methylated routinely and the reactions compared under solid-liquid phase transfer conditions to obtain 2-methylthiopyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones (6). The new triheterocyclic pyridothienopyrimidines were prepared with the objective to study their pharmacological properties. 相似文献
112.
Zeolite materials are microporous aluminosilicates with various uses, including acting as important catalysts in many processes. One such process is the methanol to gasoline reaction, used widely in industry. This reaction is known to be associated with Brønsted acid sites in the zeolite, formed when Si is substituted by Al in the framework, with an associated H+ being bound nearby to maintain charge neutrality. However, it is not clear exactly what role the proton plays in this reaction. Because of the large unit cell (generally 50-300 atoms, depending on the particular zeolite) of such structures, most ab initio calculations of these materials have focused on studying small clusters representing just a portion of the framework. However, by choosing the chabazite zeolite structure, which has only 36 atoms in the primitive unit cell, we have been able to perform a full periodic ab initio calculation. This has used density functional theory with a generalized gradient approximation for the exchange-correlation energy, a plane-wave basis set, and norm-conserving optimized pseudopotentials. Using these methods we have examined the geometry and electronic structure of a zeolite acid site and considered one way in which a methanol molecule may bind to such a site. © 1997 John Wiley & Sons, Inc. 相似文献
113.
Muinat Olanike Kazeem Umi Kalsom Md Shah Azhari Samsu Baharuddin Nor’ Aini AbdulRahman 《Applied biochemistry and biotechnology》2017,182(4):1318-1340
Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18–24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase. 相似文献
114.
G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential. 相似文献
115.
Julia Post Vanessa Kogel Anja Schaffrath Philipp Lohmann N. Jon Shah Karl-Josef Langen Dieter Willbold Antje Willuweit Janine Kutzsche 《Molecules (Basel, Switzerland)》2021,26(6)
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by selective neuronal death in the brain stem and spinal cord. The cause is unknown, but an increasing amount of evidence has firmly certified that neuroinflammation plays a key role in ALS pathogenesis. Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and has been implicated as driver of disease progression. Here, we describe a treatment study demonstrating the therapeutic potential of a tandem version of the well-known all-d-peptide RD2 (RD2RD2) in a transgenic mouse model of ALS (SOD1*G93A). Mice were treated intraperitoneally for four weeks with RD2RD2 vs. placebo. SOD1*G93A mice were tested longitudinally during treatment in various behavioural and motor coordination tests. Brain and spinal cord samples were investigated immunohistochemically for gliosis and neurodegeneration. RD2RD2 treatment in SOD1*G93A mice resulted not only in a reduction of activated astrocytes and microglia in both the brain stem and lumbar spinal cord, but also in a rescue of neurons in the motor cortex. RD2RD2 treatment was able to slow progression of the disease phenotype, especially the motor deficits, to an extent that during the four weeks treatment duration, no significant progression was observed in any of the motor experiments. Based on the presented results, we conclude that RD2RD2 is a potential therapeutic candidate against ALS. 相似文献
116.
117.
Doiphode Vidya Vairale Priti Sharma Vidhika Waghmare Ashish Punde Ashvini Shinde Pratibha Shah Shruti Pandharkar Subhash Hase Yogesh Aher Rahul Nair Shruthi Jadkar Vijaya Bade Bharat Prasad Mohit Rondiya Sachin Jadkar Sandesh 《Journal of Solid State Electrochemistry》2021,25(6):1835-1846
Journal of Solid State Electrochemistry - Herein, we report the synthesis of ZnO nanorod films onto FTO (fluorine-doped tin oxide) substrates using the solution-processed electrodeposition method.... 相似文献
118.
Devendra KC Deb Kumar Shah M. Shaheer Akhtar Mira Park Chong Yeal Kim O-Bong Yang Bishweshwar Pant 《Molecules (Basel, Switzerland)》2021,26(11)
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication. 相似文献
119.
Mahrous Awad M. A. El-Desoky A. Ghallab Jan Kubes S. E. Abdel-Mawly Subhan Danish Disna Ratnasekera Mohammad Sohidul Islam Milan Skalicky Marian Brestic Alaa Baazeem Saqer S. Alotaibi Talha Javed Rubab Shabbir Shah Fahad Muhammad Habib ur Rahman Ayman EL Sabagh 《Molecules (Basel, Switzerland)》2021,26(11)
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results. 相似文献
120.
Muddaser Shah Waheed Murad Najeeb Ur Rehman Sobia Ahsan Halim Manzoor Ahmed Hazir Rehman Muhammed Zahoor Sidra Mubin Ajmal Khan Mohamed A. Nassan Gaber El-Saber Batiha Ahmed Al-Harrasi 《Molecules (Basel, Switzerland)》2021,26(12)
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids. 相似文献