首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   604974篇
  免费   5702篇
  国内免费   1834篇
化学   326586篇
晶体学   9509篇
力学   26399篇
综合类   21篇
数学   69717篇
物理学   180278篇
  2020年   4787篇
  2019年   5356篇
  2018年   6717篇
  2017年   6646篇
  2016年   10115篇
  2015年   6480篇
  2014年   9984篇
  2013年   26583篇
  2012年   19309篇
  2011年   23747篇
  2010年   16439篇
  2009年   16178篇
  2008年   21571篇
  2007年   21714篇
  2006年   20173篇
  2005年   18430篇
  2004年   16784篇
  2003年   15227篇
  2002年   14921篇
  2001年   16923篇
  2000年   12954篇
  1999年   10157篇
  1998年   8521篇
  1997年   8478篇
  1996年   8001篇
  1995年   7509篇
  1994年   7389篇
  1993年   7109篇
  1992年   8189篇
  1991年   8126篇
  1990年   7868篇
  1989年   7781篇
  1988年   7927篇
  1987年   7813篇
  1986年   7380篇
  1985年   9837篇
  1984年   10215篇
  1983年   8391篇
  1982年   8827篇
  1981年   8708篇
  1980年   8455篇
  1979年   8716篇
  1978年   9079篇
  1977年   9098篇
  1976年   9096篇
  1975年   8318篇
  1974年   8427篇
  1973年   8830篇
  1972年   5952篇
  1971年   4842篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
141.
In this article we analyze the effect of mass‐lumping in the linear triangular finite element approximation of second‐order elliptic eigenvalue problems. We prove that the eigenvalue obtained by using mass‐lumping is always below the one obtained with exact integration. For singular eigenfunctions, as those arising in non convex polygons, we prove that the eigenvalue obtained with mass‐lumping is above the exact eigenvalue when the mesh size is small enough. So, we conclude that the use of mass‐lumping is convenient in the singular case. When the eigenfunction is smooth several numerical experiments suggest that the eigenvalue computed with mass‐lumping is below the exact one if the mesh is not too coarse. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 653–664, 2003  相似文献   
142.
A new parallel storm surge model, the Parallel Environmental Model (PEM), is developed and tested by comparisons with analytic solutions. The PEM is a 2‐D vertically averaged, wetting and drying numerical model and can be operated in explicit, semi‐implicit and fully implicit modes. In the implicit mode, the propagation, Coriolis and bottom friction terms can all be treated implicitly. The advection and diffusion terms are solved with a parallel Eulerian–Lagrangian scheme developed for this study. The model is developed specifically for use on parallel computer systems and will function accordingly in either explicit of implicit modes. Storm boundary conditions are based on a simple exponential decay of pressure from the centre of a storm. The simulated flooding caused by a major Category 5 hurricane making landfall in the Indian River Lagoon, Florida is then presented as an example application of the PEM. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
143.
144.
The sub-millisecond protonation dynamics of the chromophore in S65T mutant form of the green fluorescent protein (GFP) was tracked after a rapid pH jump following laser-induced proton release from the caged photolabile compoundo-nitrobenzaldehyde. Following a jump in pH from 8 to 5 (which is achieved within 2 μs), the fluorescence of S65T GFP decreased as a single exponential with a time constant of ∼90 μs. This decay is interpreted as the conversion of the deprotonated fluorescent GFP chromophore to a protonated non-fluorescent species. The protonation kinetics showed dependence on the bulk viscosity of the solvent, and therefore implicates bulk solvent-controlled protein dynamics in the protonation process. The protonation is proposed to be a sequential process involving two steps: (a) proton transfer from solvent to the chromophore, and (b) internal structural rearrangements to stabilize a protonated chromophore. The possible implications of these observations to protein dynamics in general is discussed  相似文献   
145.
146.
The main transitions of cellulose fatty esters with different degrees of substitution (DSs) were investigated with dynamic mechanical thermal analysis. Two distinct main relaxations were observed in partially substituted cellulose esters (PSCEs). They were attributed to the glass‐transition temperature and to the chain local motion of the aliphatic substituents. The temperatures of both transitions decreased when DS or the number of carbon atoms (n) of the acyl substituent increased. Conversely, all the transitions of fully substituted cellulose esters occurred within a narrow temperature range, and they did not vary significantly with n. This phenomenon was explained by the formation of a crystalline phase of the fatty substituents. The presence of few residual OH groups in PSCEs was responsible for a large increase in the storage bending modulus, and it eliminated the effect of n on damping. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 281–288, 2003  相似文献   
147.
148.
149.
Russian Journal of General Chemistry -  相似文献   
150.
The effects of the blend ratio and initiating system on the viscoelastic properties of nanostructured natural rubber/polystyrene‐based interpenetrating polymer networks (IPNs) were investigated in the temperature range of ?80 to 150 °C. The studies were carried out at different frequencies (100, 50, 10, 1, and 0.1 Hz), and their effects on the damping and storage and loss moduli were analyzed. In all cases, tan δ and the storage and loss moduli showed two distinct transitions corresponding to natural rubber and polystyrene phases, which indicated that the system was not miscible on the molecular level. However, a slight inward shift was observed in the IPNs, with respect to the glass‐transition temperatures (Tg's) of the virgin polymers, showing a certain degree of miscibility or intermixing between the two phases. When the frequency increased from 0.1 to 100 Hz, the Tg values showed a positive shift in all cases. In a comparison of the three initiating systems (dicumyl peroxide, benzoyl peroxide, and azobisisobutyronitrile), the dicumyl peroxide system showed the highest modulus. The morphology of the IPNs was analyzed with transmission electron microscopy. The micrographs indicated that the system was nanostructured. An attempt was made to relate the viscoelastic behavior to the morphology of the IPNs. Various models, such as the series, parallel, Halpin–Tsai, Kerner, Coran, Takayanagi, and Davies models, were used to model the viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by group contribution analysis; this showed that the damping was influenced by the phase morphology, dual‐phase continuity, and crosslinking of the phases. Finally, the homogeneity of the system was further evaluated with Cole–Cole analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1680–1696, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号