首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308479篇
  免费   3183篇
  国内免费   642篇
化学   166479篇
晶体学   4385篇
力学   12592篇
综合类   10篇
数学   37550篇
物理学   91288篇
  2020年   2672篇
  2019年   2858篇
  2018年   3952篇
  2017年   3888篇
  2016年   5991篇
  2015年   3897篇
  2014年   5483篇
  2013年   13392篇
  2012年   10540篇
  2011年   12212篇
  2010年   8657篇
  2009年   8204篇
  2008年   11394篇
  2007年   11368篇
  2006年   10526篇
  2005年   9746篇
  2004年   8877篇
  2003年   7919篇
  2002年   7710篇
  2001年   8078篇
  2000年   6452篇
  1999年   4937篇
  1998年   4308篇
  1997年   4208篇
  1996年   4105篇
  1995年   3690篇
  1994年   3936篇
  1993年   3604篇
  1992年   4084篇
  1991年   4022篇
  1990年   3979篇
  1989年   3778篇
  1988年   3891篇
  1987年   3760篇
  1986年   3574篇
  1985年   4748篇
  1984年   4965篇
  1983年   4151篇
  1982年   4288篇
  1981年   4221篇
  1980年   4165篇
  1979年   4120篇
  1978年   4421篇
  1977年   4332篇
  1976年   4409篇
  1975年   4053篇
  1974年   4110篇
  1973年   4282篇
  1972年   2982篇
  1971年   2484篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
101.
There is a high correlation between molecular surface area (TSA) of triorganotin and triorganolead compounds and their toxicity towards a bacterium (Escherichia coli) and an alga (Selenastrum capricornutum). Parallel attempts to correlate other Group IVA organometals incorporating silicon or germanium were unsuccessful. It was further demonstrated, however, that a high correlation was obtainable between certain series of compounds with the same organic substituent but different metal centers involving all Group IVA elements. In both instances, the inability to obtain a quantitative structure-activity relationship (QSAR) for all systems studied appears to be a function of the solubility of the compounds. While organotin TSA values have been found to correlate well with their toxicities toward various organisms, this study clearly suggests that this type of QSAR can be readily extended to include other organometal systems, provided that there is no solubility problem and the toxicity is a function of the hydrophobicity of the organometal compounds.  相似文献   
102.
From the analysis of Mössbauer data for Y2Fe17 and Y2Fe17N3−δ at various temperatures the hyperfine fields for 4f, 6g, 12j, 12k iron sites were estimated as a function of temperature. The reduced magnetizations calculated from the values of the hyperfine fields are fitted with a mean field model for four interacting sublattices using a computer program. The estimated exchange interaction from the fitting procedure between the 4f sites is found strongly negative (antiferromagnetic) in Y2Fe17 whereas in Y2Fe17N3−δ it increases and becomes weak negative following a modified Slater-Néel curve. The rest of the exchange interactions are found positive or weak negative depending on the distances between the Fe atoms.  相似文献   
103.
The blends composed of polyamide 6 (PA6) and polyamide 66 (PA66) were obtained using two different preparation methods, one of which was the melt‐mixing through a twin‐screw extruder and the subsequent injection molding; and the other, the in situ blending through anionic polymerization of ε‐caprolactam in the presence of PA66. For the former, there existed a remarkable improvement in toughness but a drastic drop in strength and modulus; however, for the latter, a reverse but less significant trend of mechanical properties change appeared. Various characterizations were conducted, including the analyses of crystalline morphology, crystallographic form, and crystallization and melting behaviors using polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively; observation of morphology of fractured surface with scanning electron microscope (SEM); measurement of glass transition through dynamic mechanical analysis (DMA); and the intermolecular interaction as well as the interchange reaction between the two components by Fourier transform infrared spectrometry (FT‐IR) and 13C solution NMR. The presence and absence of interchange reaction was verified for the in situ and melt‐mixed blends, respectively. It is believed that the transreaction resulted in a drop in glass transition temperature (Tg) for the in situ blends, contrary to an increase of Tg with increasing PA66 content for the melt‐mixed ones. And the two kinds of fabrication methods led to significant differences in the crystallographic form, spherulite size and crystalline content and perfection as well. Accordingly, it is attempted to explain the reasons for the opposite trends of changes in the mechanical properties for these two blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1176–1186, 2007  相似文献   
104.
A new oxazolidine derivative was obtained from phenol, 2‐amino‐2‐methylpropane‐1,3‐diol and paraformaldehyde. The reaction of this novel oxazolidine diol with phenylisocyanate lead to a urethane model compound which can be polymerized thermally by oxazolidine ring opening to give a Mannich bridge structure. Linear segmented polyurethanes were prepared by reaction of different ratios of oxazolidine diol and commercial polyethylenglycol (Mw ~ 400) with 4,4′‐methylenbis (cyclohexylisocyanate) (HMDI, 90% isomers mixture). The polyurethanes were thermally characterized and crosslinked by oxazolidine ring opening to obtain materials which showed improved thermal stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4965–4973, 2007  相似文献   
105.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   
106.
107.
108.
109.
There has been renewed interest in the structure of III-V compound semiconductor (001) surfaces caused by recent experimental and theoretical findings, which indicate that geometries different from the seemingly well-established dimer models describe the surface ground state for specific preparation conditions. I review briefly the structure information available on the (001) surfaces of GaP, InP, GaAs and InAs. These data are complemented with first-principles total-energy calculations. The calculated surface phase diagrams are used to explain the experimental data and reveal that the stability of specific surface structures depends largely on the relative size of the surface constituents. Several structural models for the Ga-rich GaAs (001)(4×6) surface are discussed, but dismissed on energetic grounds. I discuss in some detail the electronic properties of the recently proposed cation-rich GaAs (001)ζ(4×2) geometry. Received: 18 May 2001 / Revised version: 23 July 2001 / Published online: 3 April 2002  相似文献   
110.
The adsorption of nonionic surfactant Triton X-100 on quartz sand and methylated quartz sand from water and toluene was investigated by means of spectrophotometry, the radiotracer technique, and wetting angle measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号