首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314419篇
  免费   3757篇
  国内免费   1091篇
化学   170670篇
晶体学   4458篇
力学   13030篇
综合类   7篇
数学   36270篇
物理学   94832篇
  2020年   1983篇
  2019年   1954篇
  2018年   1965篇
  2017年   1875篇
  2016年   3859篇
  2015年   3236篇
  2014年   4424篇
  2013年   13978篇
  2012年   10733篇
  2011年   13369篇
  2010年   8275篇
  2009年   8255篇
  2008年   12346篇
  2007年   12580篇
  2006年   12221篇
  2005年   11163篇
  2004年   10038篇
  2003年   8848篇
  2002年   8702篇
  2001年   10110篇
  2000年   7713篇
  1999年   6117篇
  1998年   4897篇
  1997年   4734篇
  1996年   4774篇
  1995年   4363篇
  1994年   4115篇
  1993年   3942篇
  1992年   4435篇
  1991年   4294篇
  1990年   4011篇
  1989年   3830篇
  1988年   4122篇
  1987年   3784篇
  1986年   3679篇
  1985年   5318篇
  1984年   5396篇
  1983年   4377篇
  1982年   4753篇
  1981年   4793篇
  1980年   4545篇
  1979年   4663篇
  1978年   4665篇
  1977年   4644篇
  1976年   4597篇
  1975年   4508篇
  1974年   4356篇
  1973年   4524篇
  1972年   2570篇
  1971年   1880篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
Cyclization of a polystyrene chain (Mn = 10,600; Mw/Mn = 1.09) both ends labeled with 4-(1-pyrenyl)butanoamide groups was studied in cyclohexane between 25 and 95°C. The amide groups (peptide bonds) at both ends can form an intrachain hydrogen bond between the amide hydrogen at one chain end and the carbonyl oxygen at the other. The presence of two sets of conformers, random coils, and chains cyclized through hydrogen bonding, complicates the data analysis. The pyrene excimer kinetics of this polymer is well described by a model composed of two monomers (hydrogen bonded and nonbonded chains) and one excimer, in equilibrium. The cyclization rate constant for hydrogen-bonded chains is larger than the one for nonhydrogen-bonded chains. The pyrene excimer binding energy (ca. 1.6 kcal/mol) is lower than the published value for nonhydrogen-bonded chains (~ 9 kcal/mol), suggesting that intrachain hydrogen bonding hinders the stabilization of the excimer. © 1994 John Wiley & Sons, Inc.  相似文献   
992.
993.
994.
Small SiC nanoparticles (10 nm diameter) have been grown in a flow reactor by CO2 laser pyrolysis from a C2H2 and SiH4 mixture. The laser radiation is strongly absorbed by SiH4 vibration. The energy is transferred to the reactive medium and leads to the dissociation of molecules and the subsequent growth of the nanoparticles. The reaction happens with a flame. The purpose of the experiments reported in this paper is to limit the size of the growing particles to the nanometric scale for which specific properties are expected to appear. Therefore the effects of experimental parameters on the structure and chemical composition of nanoparticles have been investigated. For a given reactive mixture and gas velocity, the flame temperature is governed by the laser power. In this study, the temperature was varied from 875°C to 1100°C. The chemical analysis of the products indicate that their composition is a function of the temperature. For the same C/Si atomic ratio in the gaseous phase, the C/Si ratio in the powder increases from 0.7 at 875°C up to 1.02 at 1100°C, indicating a growth mechanism limited by C2H2 dissociation. As expected, X-ray diffraction has shown an improved crystallisation with increasing temperature. Transmission electron microscopy observations have revealed the formation of 10 nm grains for all values of laser power (or flame temperature). These grains appear amorphous at low temperature, whereas they contain an increasing number of nanocrystals (2 nm diameter) when the temperature increases. These results pave the way to a better control of the structure and chemical composition of laser synthesised SiC nanoparticles in the 10 nm range.  相似文献   
995.
There exist a number of typical and interesting systems and/or models, which possess three-generator Lie-algebraic structure, in atomic physics, quantum optics, nuclear physics and laser physics. The well-known fact that all simple 3-generator algebras are either isomorphic to the algebra sl (2, C) or to one of its real forms enables us to treat these time-dependent quantum systems in a unified way. By making use of both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation, the present paper obtains exact solutions of the time-dependent Schr?dinger equations governing various three-generator Lie-algebraic quantum systems. For some quantum systems whose time-dependent Hamiltonians have no quasialgebraic structures, it is shown that the exact solutions can also be obtained by working in a sub-Hilbert-space corresponding to a particular eigenvalue of the conserved generator (i.e., the time-independent invariant that commutes with the time-dependent Hamiltonian). The topological property of geometric phase factors and its adiabatic limit in time-dependent systems is briefly discussed. Received 6 July 2002 / Received in final form 21 October 2002 Published online 11 February 2003  相似文献   
996.
997.
Ohne ZusammenfassungSt. Petersburg, den 20. April 1885.  相似文献   
998.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   
999.
The isoconversional method suggested by Friedman and the invariant kinetic parameters method (IKP) were used in order to examine the kinetics of the nonisothermal crystallization of (GeS2)0.3(Sb2S3)0.7. The objective of the paper is to show the usefulness of the IKP method both for determining the activation parameters as well as the model of the investigated process. It was shown that the kinetic triplet [(E, A, f(α), where E is the activation energy, A is the preexponential factor, and f(α) is the differential function of conversion], which results through the application of the IKP method, depends on the set of kinetic models considered. For different sets of kinetic models, proportional values of f(α) are obtained. A criterion for the selection of this set, the use of which lead to the true kinetic triplet corresponding to the analyzed process (E = 163.2 kJ mol?1; A = 2.47 × 1012 min?1 and the Avrami‐Erofeev model, Am, for m = 2.5–2.6 was suggested. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 309–315, 2004  相似文献   
1000.
We prove some sharp Hardy-type inequalities related to the Dirac operator by elementary, direct methods. Some of these inequalities have been obtained previously using spectral information about the Dirac-Coulomb operator. Our results are stated under optimal conditions on the asymptotics of the potentials near zero and near infinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号