首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   12篇
化学   320篇
晶体学   1篇
力学   14篇
数学   59篇
物理学   64篇
  2023年   2篇
  2022年   7篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   15篇
  2015年   12篇
  2014年   25篇
  2013年   23篇
  2012年   33篇
  2011年   25篇
  2010年   17篇
  2009年   19篇
  2008年   34篇
  2007年   33篇
  2006年   29篇
  2005年   41篇
  2004年   27篇
  2003年   20篇
  2002年   21篇
  2001年   10篇
  2000年   2篇
  1999年   6篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1972年   1篇
排序方式: 共有458条查询结果,搜索用时 0 毫秒
71.
M1 aminopeptidases comprise a large family of biologically important zinc enzymes. We show that peptide turnover by the M1 prototype, leukotriene A4 hydrolase/aminopeptidase, involves a shift in substrate position associated with exchange of zinc coordinating groups, while maintaining the overall coordination geometry. The transition state is stabilized by residues conserved among M1 members and in the final reaction step, Glu-296 of the canonical zinc binding HEXXH motif shuffles a proton from the hydrolytic water to the leaving group. Tripeptide substrates bind along the conserved GXMEN motif, precisely occupying the distance between Glu-271 and Arg-563, whereas the Arg specificity is governed by a narrow S1 pocket capped with Asp-375. Our data provide detailed insights to the active site chemistry of M1 aminopeptidases and will aid in the development of novel enzyme inhibitors.  相似文献   
72.
Intracellular membrane fusion is coordinated by membrane-anchored fusion proteins. The cytosolic domains of these proteins form a specific complex that pulls the membranes into close proximity. Although some results indicate that membrane merger can be accomplished solely on the basis of proximity, others emphasize the importance of bilayer stress exerted by transmembrane peptides. In a reductionist approach, we recently introduced a fusion machinery built from cholesterol-modified DNA zippers to mimic fusion protein function. Aiming to further optimize DNA-mediated fusion, we varied in this work length and number of DNA strands and used either one or two cholesterol groups for membrane anchoring of DNA. The results reveal that the use of two cholesterol anchors is essential to prevent cDNA strands from shuttling to the same membrane, which leads to vesicle release instead of membrane merger. A surface coverage of 6-13 DNA strands was a precondition for efficient fusion, whereas fusion was insensitive to DNA length within the tested range. Besides lipid mixing, we also demonstrate DNA-induced content mixing of large unilamellar vesicles composed of the most abundant cellular lipids phosphatidylcholine, phosphatidylethanolamine, cholesterol, and sphingomyelin. Taken together, DNA-mediated fusion emerges as a promising tool for the functionalization of artificial and biological membranes and may help to dissect the functional role of fusion proteins.  相似文献   
73.
The volatile components of the mandibular gland secretion generated by the Giant Ichneumon parasitoid wasp Megarhyssa nortoni nortoni Cresson are mainly spiroacetals and methyl ketones, and all have an odd number of carbon atoms. A biosynthetic scheme rationalizing the formation of these diverse components is presented. This scheme is based on the results of incorporation studies using (2)H-labeled precursors and [(18)O]dioxygen. The key steps are postulated to be decarboxylation of beta-ketoacid equivalents, beta-oxidation (chain shortening), and monooxygenase-mediated hydroxylation leading to a putative ketodiol that cyclizes to spiroacetals. The generality of the role of monooxygenases in spiroacetal formation in insects is considered, and overall, a cohesive, internally consistent theory of spiroacetal generation by insects is presented, against which future hypotheses will have to be compared.  相似文献   
74.
We consider chordal SLE\({_\kappa}\) curves for \({\kappa > 4}\), where the intersection of the curve with the boundary is a random fractal of almost sure Hausdorff dimension \({{\rm min}\{2-8/\kappa,1\}}\). We study the random sets of points at which the curve collides with the real line at a specified “angle” and compute an almost sure dimension spectrum describing the metric size of these sets. We work with the forward SLE flow and a key tool in the analysis is Girsanov’s theorem, which is used to study events on which moments concentrate. The two-point correlation estimates are proved using the direct method.  相似文献   
75.
We here exploit the recently reported thermodynamic preference for poly(dAdT)(2) over mixed-sequence calf thymus (ct) DNA of two binuclear ruthenium complexes, DeltaDelta-[mu-bidppz(bipy)4Ru2](4+) (B) and DeltaDelta-[mu-bidppz(phen)(4)Ru(2)](4+) (P), that bind to DNA by threading intercalation, to determine their intrinsic dissociation rates. After adding poly(dAdT)(2) as a sequestering agent to B or P bound to ct-DNA, the observed rate of change in luminescence upon binding to the polynucleotide reflects the rate of dissociation from the mixed sequence. The activation parameters for the threading and dissociation rate constants allow us for the first time to characterize the thermodynamics of the exceedingly slow threading intercalation equilibrium of B and P with ct-DNA. The equilibrium is found to be endothermic by 33 and 76 kJ/mol, respectively, and the largest part of the enthalpy difference between the complexes originates from the forward threading step. At physiological temperature (37 degrees C) B and P have dissociation half-lives of 18 and 38 h, respectively. This is to our knowledge the slowest dissociating noncovalently bound DNA-drug reported. SDS sequestration is the traditional method for determination of rate constants for cationic drugs dissociating from DNA. However, the rates may be severely overestimated for slowly dissociating molecules due to unwanted catalysis by the SDS monomers and micelles. Having determined the intrinsic dissociation rates with poly(dAdT)(2) as sequestering agent, we find that the catalytic effect of SDS on the dissociation rate may be up to a factor of 60, and that the catalysis is entropy driven. A simple kinetic model for the SDS concentration dependence of the apparent dissociation rate suggests an intermediate that involves both micelles and DNA-threaded complex.  相似文献   
76.
We here describe an alternative method of embedding functionalized capillaries into microdevices fabricated in PDMS. The capillaries have square-shaped outer dimensions and fit into elastic PDMS channel networks of similar dimensions. By modifying the capillary off-chip, the technique makes it possible to integrate a new chip function without risking contamination of already existing chemically patterned areas because of new reagent solutions. Leak-free insertion of these capillaries has earlier been reported, where a thin layer of uncured PDMS bonded the capillary to the microchannel and the lid structure. In this new approach, oxygen plasma is used to bond the square capillary to the PDMS, eliminating the risk of clogging the microsystem with uncured prepolymer. The new embedding technique was exemplified and evaluated by inserting a square capillary piece containing monolithic sol-gel for sample preconcentration application. The assembled microdevice was run with mass spectrometric detection, showing that peptides were preconcentrated without leakage from either the sol-gel itself or around the inserted capillary. Repeated preconcentration runs showed migration times better than 3% for all peptides. We believe that the presented microchip assembling technique greatly simplifies the insertion of functionalized capillary pieces, e.g., an initial preconcentrator to a PDMS device containing other downstream modules.  相似文献   
77.
78.
79.
The asymmetric synthesis of 1,3-oxathiolan-5-one derivatives through an enzyme-catalyzed, dynamic covalent kinetic resolution strategy is presented. Dynamic hemithioacetal formation combined with intramolecular, lipase-catalyzed lactonization resulted in good conversions with moderate to good enantiomeric excess (ee) for the final products. The process was evaluated for different lipase preparations, solvents, bases, and reaction temperatures, where lipase B from Candida antarctica (CAL-B) proved most efficient. The substrate scope was furthermore explored for a range of aldehyde structures, together with the potential access to nucleoside analog inhibitor core structures.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号