首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   54篇
  国内免费   1篇
化学   404篇
力学   4篇
数学   33篇
物理学   32篇
  2024年   3篇
  2023年   13篇
  2022年   16篇
  2021年   19篇
  2020年   32篇
  2019年   31篇
  2018年   10篇
  2017年   9篇
  2016年   32篇
  2015年   32篇
  2014年   33篇
  2013年   23篇
  2012年   42篇
  2011年   41篇
  2010年   20篇
  2009年   11篇
  2008年   24篇
  2007年   23篇
  2006年   14篇
  2005年   13篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1973年   1篇
  1966年   3篇
  1943年   1篇
排序方式: 共有473条查询结果,搜索用时 31 毫秒
461.
In this work we describe the synthesis of multi‐sensitive aqueous microgel particles with incorporated conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) nanorods. We demonstrate that the loaded amount of PEDOT nanorods as well as their morphology can be varied by controlling the reaction conditions such as monomer concentration and alcohol concentration in aqueous phase. Obtained microgels can be stimulated by changes in the environment temperature as well as by the repulsion/attraction forces within polymeric network due to the reversible oxidation/reduction of the conjugated polymer. Microgels with unique properties can be operated in colloidal systems or used as building blocks for the preparation of nanostructured films.

  相似文献   

462.
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in PDI derivatives, chromophore excited states with high spin multiplicities, such as triplet or quintet states, have been revealed as key intermediates. The exploration of their properties and formation conditions is thus expected to provide invaluable insight into their underlying photophysics and promises to reveal strategies for increasing the performance of optoelectronic devices. However, accessing these high-multiplicity excited states of PDI to increase our mechanistic understanding remains a difficult task, due to the fact that the lowest excited singlet state of PDI decays with near-unity quantum yield to its ground state. Here we make use of radical-enhanced intersystem crossing (EISC) to generate the PDI triplet state in high yield. One or two 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) stable radicals were covalently attached to the imide position of PDI chromophores with and without p-tert-butylphenoxy core substituents. By combining femtosecond UV-vis transient absorption and transient electron paramagnetic resonance spectroscopies, we demonstrate strong magnetic exchange coupling between the PDI triplet state and TEMPO, resulting in the formation of excited quartet or quintet states. Important differences in the S1 state deactivation rate constants and triplet yields are observed for compounds bearing PDI moieties with different core substitution patterns. We show that these differences can be rationalized by considering the varying importance of competitive excited state decay processes, such as electron and excitation energy transfer. The comparison of the results obtained for different PDI–TEMPO derivatives leads us to propose design guidelines for optimizing the efficiency of triplet sensitization in molecular assemblies by EISC.

The triplet state of PDI can be sensitized efficiently by radical-enhanced intersystem crossing. A detailed study of several related structures allows us to propose new strategies to optimize triplet formation in materials for optoelectronic devices.  相似文献   
463.
The formation of an appropriate solid electrolyte interphase (SEI) at the anode of a sodium battery is crucially dependent on the electrochemical stability of solvent and electrolyte at the redox potential of Na/Na+ in the respective system. In order to determine entropic contributions to the relative stability of the electrolyte solution, we measure the reaction entropy of Na metal deposition for diglyme (DG) and propylene carbonate (PC) based electrolyte solutions by electrochemical microcalorimetry at single electrodes. We found a large positive reaction entropy for Na+ deposition in DG of ΔR 234 J mol−1 K−1 (c.f.: ΔR 83 J mol−1 K−1), which signals substantial entropic destabilization of Na+ in DG by about 0.73 eV, thus increasing the stability of solvent and electrolyte relative to Na+ reduction. We attribute this strong entropic destabilization to a highly negative solvation entropy of Na+, due to the low dielectric constant and high freezing entropy of DG.  相似文献   
464.
Diatoms are abundant unicellular microalgae, responsible for ≈20 % of global photosynthetic CO2 fixation. Nevertheless, we know little about fundamental aspects of their biology, such as their sexual reproduction. Pheromone-mediated chemical communication is crucial for successful mating. An attraction pheromone was identified in the diatom Seminavis robusta, but metabolites priming cells for sex and synchronizing search and mating behavior remained elusive. These sex-inducing pheromones (SIP) induce cell cycle arrest and trigger the production of the attraction pheromone. Here we describe the challenging structure elucidation of an S. robusta SIP. Guided by metabolomics, a candidate metabolite was identified and elucidated by labeling experiments, NMR, ESI MSn analyses, and chemical transformations. The use of negative ion mode MS was essential to decipher the unprecedented hydroxyproline and β-sulfated aspartate-containing cyclic heptapeptide that acts in femtomolar concentrations.  相似文献   
465.
466.
467.
Summary: Nano-sized zinc oxide (ZnO) was chosen as a suitable candidate for the UV-protection of coatings. ZnO-based acrylate coatings were applied to polycarbonate plates, glass plates and impregnated wood. Coated samples were artificially weathered (Xenon test) for at least 1500 hours and studied with regards to their optical and mechanical properties, such as color shifts (yellowing), as well as to changes in brightness, transparency or hydrophobicity. The prepared wood coatings showed reduced yellowing and improved optical properties.  相似文献   
468.
Heteroacenes developed to widely used building blocks in organic semiconductors for application in organic electronics due to their tunable structures and properties concomitant with inherent stability. Here, we report efficient preparation and investigation of so far unknown heterotriacenes, basic anti- and syn-dithienopyrazine 5 and 6 . The comparison of the two isomers with respect to electronic properties and follow-up reactions gives insights into structure-property and -reactivity relationships. Examples of transition metal-catalyzed C−C cross-coupling reactions of corresponding halogenated derivatives show the practical impact for extended π-conjugated systems applied in optoelectronic devices.  相似文献   
469.
Two mononuclear ruthenium(II) complexes based on dianionic {N4} ligands and with axial pyridines have been prepared and characterized crystallographically ( 1 ) or by 2D NMR spectroscopy using residual dipolar couplings ( 2 ). The {N4} ligands provide a constrained equatorial coordination with one large N−Ru−N angle, and additional non-coordinating N atoms in case of 2 . Their redox properties have been investigated (spectro)electrochemically, and their potential to serve as water oxidation catalysts has been probed using cerium ammonium nitrate (CAN) at pH 1.0. Complex 1 undergoes rapid degradation, likely via ligand oxidation, whereas 2 is more rugged and exhibits 80 % efficiency in the CeIV-driven water oxidation, with a high initial turnover frequency (TOFi) of 3.07×10−2 s−1 (at 100 equiv. CAN). The initial rate of O2 evolution exhibits 1st order dependence on catalyst concentration, suggesting a water nucleophilic attack mechanism. Repeated addition of CAN and control experiments show that high ionic strength conditions (both NO3 and CeIII) significantly decrease the TOF.  相似文献   
470.
Electrostatic self‐assembly can be used to form supramolecular vesicles in aqueous solution. Vesicles consist of cationic G8 poly(amidoamine) dendrimers and the trivalent sulfonate dye Ar27. No classical amphiphiles are present but the interplay of electrostatics, ππ interaction and geometric factors influences the structure formation. Labeled guest molecules, both small molecules and peptides, can be included inside these vesicles and vesicles imaged by fluorescence techniques. The structure was studied by dynamic and static light scattering, small‐angle neutron scattering, confocal laser scanning microscopy, and fluorescence correlation spectroscopy. The study indicates the prospect of constructing functional nanoobjects by the self‐assembly of charged molecules in aqueous solution.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号