首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   4篇
  国内免费   1篇
化学   127篇
物理学   12篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有139条查询结果,搜索用时 31 毫秒
71.
Fast capillary electrophoresis (CE) hyphenated to time-of-flight mass spectrometry (TOF-MS) of four organoarsenic species (glycerol oxoarsenosugar, sulfate oxoarsenosugar, arsenobetaine, arsenocholine) are presented using short length CE capillaries under high electric field strengths of up to 1.3 kV cm(-1) with small inner diameter (ID). The separation of arsenosugars by CE is demonstrated for the first time. An aqueous formic acid solution was employed as the background electrolyte (BGE) for the separation. Various acid concentrations were evaluated for their influence on migration times, separation efficiency as well as with regard to controlling the charge of the arsenic species. A 0.1 M formic acid/ammonium formate buffer (pH 2.8) proved to be suitable for the separation of the four species. A non-aqueous BGE was tested as an alternative buffer system for fast speciation analysis. Separation of arsenobetaine and arsenocholine could even be achieved within 10 s by pressure-assisted CE. Application of the optimized method for the analysis of extracts of a seagrass and a Wakame algae sample as well as the brown algae homogenate reference material IAEA-140/TM revealed a clear signal for the glycerol arsenosugar.  相似文献   
72.
Until now, the solid-state photo-CIDNP effect, discovered in 1994 by Zysmilich and McDermott, has been observed selectively in photosynthetic systems. Here we present the first observation of this effect in a nonphotosynthetic system, the blue-light photoreceptor phototropin LOV1-C57S using (13)C magic-angle spinning (MAS) NMR.  相似文献   
73.
Capillary batch injection analysis (CBIA) and capillary flow injection analysis (CFIA) in combination with electrochemical detection as well as optical detection methods were studied and compared with respect to their performance. Despite the differences in technical equipment both techniques share the same idea of reproducible transport and washout of nanolitre samples over sensing surfaces. Thus the same electrochemical flow cell can be used for both CBIA and CFIA. The amperometric and potentiometric CBIA responses were studied under various experimental conditions in order to optimise the CBIA set-up. In particular, the density of the sample solution relative to that of the cell electrolyte had a remarkable effect on the hydrodynamic characteristics of CBIA. Dispersion in CFIA was investigated using on column UV-detection for electroosmotic flow (EOF) conditions as well as for gravity flow conditions. It is demonstrated for a 75 μm capillary that the relative band broadening of the sample plug under gravity flow is only about twice as large as under EOF. Furthermore, dispersion in a system that involves a chemical reaction between the sample and the carrier solution, namely CrO7 2– and Fe2+ has been investigated by amperometric detection and exploited for the determination of dichromate microsamples. Received: 28 November 1997 / Revised: 23 February 1998 / Accepted: 26 February 1998  相似文献   
74.
A method for conducting fast and efficient capillary electrophoresis (CE) based on short separation capillaries in vertical alignment was developed. The strategy enables for high-throughput analysis from small sample vials (low microliter to nanoliter range). The system consists of a lab-made miniaturized autosampling unit and an amperometric end-column detection (AD) cell. The device enables a throughput of up to 200 separations per hour. CE-AD separations of a dye model system in capillaries of only 4 to 7.5 cm length with inner diameters (ID) of 10 or 15 μm were carried out under conditions of very high electric field strengths (up to 3.0 kV/cm) with high separation efficiency (half peak widths below 0.2 s) in less than 3.5 s migration time. A non-aqueous background electrolyte, consisting of 10 mM ammonium acetate and 1 M acetic acid in acetonitrile, was used. The practical suitability of the system was evaluated by applying it to the determination of dyes in overhead projector pens. Fig. 1
Schematic illustration of high-throughput capillary electrophoresis with electrochemical detection  相似文献   
75.
Summary This paper describes a TLC-densitometric procedure for identification and determination of bisoprolol, labetalol, and propafenone in pharmaceutical preparations. The compounds were derivatized with dabsyl chloride and chromatographed on silica gel by ascending development. The separation of the dabsylated drugs was followed by densitometric quantitation. The method was satisfactorily applied to pharmaceutical preparations. TheRSD of quantitation was between 1.6 and 2.3%.  相似文献   
76.
An archaea-type ether lipid in bacteria: PcrB, the bacterial homologue of the archaea-specific geranylgeranylglyceryl phosphate synthase, produces heptaprenylglyceryl phosphate in bacillales. The product becomes dephosphorylated and acetylated in?vivo.  相似文献   
77.
Two tubular capacitively coupled contactless conductivity detection (C(4)D) cells with different geometric dimensions were evaluated with regard to their main analytical characteristics under non-separation and separation conditions in conjunction with liquid chromatography. A comparison of the performance of the tubular cells to a previously tested thin-layer detection cell was drawn. Additionally, using a theoretical model the experimental results were compared with sets of calculated values and partially enabled to model the complex behavior of C(4)D detection in combination with high-performance liquid chromatography (HPLC). While cell 1 is characterized by a geometric cell volume of 0.6 μL, a wall thickness of 675 μm, and an inner diameter of 125 μm, the respective values for cell 2 are 2.3 μL, 200 μm, and 250 μm. The main analytical parameters were evaluated using a potassium chloride (KCl) solution. The limits of detection were 0.4 μM KCl (5.7 × 10(-6) S m(-1)) for cell 1 and 0.2 μM KCl (3.2 × 10(-6) S m(-1)) for cell 2, which compares well to the previously found 0.2 μM for the thin-layer cell. A pair of linear ranges was found for both cells in a concentration interval ranging from 1 × 10(-6) to 1 × 10(-4) M (corresponding to 1.5 × 10(-5) to 1.5 × 10(-3) S m(-1)) KCl, respectively. Furthermore, the detector cells were applied to the HPLC separation of a model compound system consisting of benzoic acid, lactic acid, octanesulphonic acid, and sodium capronate. Separation of the compounds was achieved with a Biospher PSI 100 C18 column using 60% aqueous acetonitrile mobile phase. Calibration curves for the examined model system were well correlated (r2 > 0.997), and it was found that under separation conditions the arrangement with the lower cell volume (cell 1) yields higher sensitivity and respectively lower limits of detection for all model compounds. Compared with the thin-layer cell, the tubular cells show better overall performance in regard to the determined analytical characteristics.  相似文献   
78.
In this study, the effects of forced convection on scanning electrochemical microscopy (SECM) experiments in feedback mode using ferrocenemethanol as redox mediator are presented. Forced convection, which enhances the mass transfer inside the system, was generated via an electrical high precision stirrer integrated into the SECM setup. A thin‐film interdigitated array electrode serving as model substrate was investigated with probe scan curves in z‐direction and SECM imaging in constant height mode utilizing ultramicroelectrodes (UME) with diameters (dprobe) of 25 μm and 12.5 μm. It was found that forced convection increased the overall current during SECM imaging without distorting distinctive features of the imaged structure when working with a 25 μm UME at substrate‐to‐tip distances of 14 μm and 11 μm. Furthermore, the electrochemical contrast was improved under hydrodynamic conditions for a substrate‐to‐tip distance of 11 μm and scan rates of 5 μm s?1, 10 μm s?1, 20 μm s?1 and 40 μm s?1. When further decreasing the gap between the UME and the substrate to 9 μm almost no effects of the forced convection were observed. Consequently, for a 25 μm UME, forced convection led to higher currents and improved performance during SECM experiments in feedback mode at substrate‐to‐tip distances of 14 μm and 11 μm, whereas no effects were observed for a 12.5 μm UME at a distance of 8 μm.  相似文献   
79.
In nanosecond-laser flash photo-CIDNP MAS NMR, polarization generation (PG) proceeds much faster than longitudinal spin relaxation. With a nanosecond-laser setup linked to the NMR console the repetition time of the experiment is then limited by the minimum recycle delay of the NMR spectrometer and the maximum repetition rate of laser flashes. These limits can only be reached if polarization left after the NMR experiment is completely canceled before the next laser flash. We introduce a presaturation pulse sequence, based on three (pi/2) (13)C pulses and optimized timing and phase cycling that allows for such efficient polarization extinction (PE). The technique is demonstrated on selectively isotope labeled bacterial reaction centers (RCs) of Rhodobacter (Rb.) sphaeroides wildtype (WT). High-quality (13)C photo-CIDNP MAS NMR spectra are obtained using cycle rates up to 4 Hz. The PE-PG strategy proposed here provides a general experimental scheme for reduction of measurement time in magnetic resonance experiments based on fast PG.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号