首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10256篇
  免费   415篇
  国内免费   79篇
化学   7334篇
晶体学   62篇
力学   140篇
数学   1533篇
物理学   1681篇
  2023年   60篇
  2022年   80篇
  2021年   114篇
  2020年   217篇
  2019年   178篇
  2018年   105篇
  2017年   85篇
  2016年   278篇
  2015年   222篇
  2014年   264篇
  2013年   500篇
  2012年   534篇
  2011年   610篇
  2010年   369篇
  2009年   327篇
  2008年   552篇
  2007年   540篇
  2006年   549篇
  2005年   512篇
  2004年   424篇
  2003年   323篇
  2002年   383篇
  2001年   181篇
  2000年   188篇
  1999年   162篇
  1998年   168篇
  1997年   150篇
  1996年   158篇
  1995年   132篇
  1994年   155篇
  1993年   132篇
  1992年   114篇
  1991年   112篇
  1990年   93篇
  1989年   76篇
  1988年   64篇
  1987年   68篇
  1986年   58篇
  1985年   111篇
  1984年   98篇
  1983年   69篇
  1982年   106篇
  1981年   91篇
  1980年   77篇
  1979年   97篇
  1978年   87篇
  1977年   80篇
  1976年   87篇
  1975年   64篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
301.
Single phase powders of (A19N7)[In4]2 (A = Ca, Sr) and (Ca4N)[In2] were prepared by reaction of melt beads of the metallic components with nitrogen. The crystal structure of (Ca19N7)[In4]2 was refined based on neutron and X‐ray powder diffraction data. The crystal structure of (Sr19N7)[In4]2 was solved from the X‐ray powder pattern. The structure refinements in combination with results from chemical analyses ascertain the compositions. The compounds (A19N7)[In4]2 (A = Ca, Sr) are isotypes of (Ca19N7)[Ag4]2; (Ca19N7)[In4]2 is probably identical to the earlier reported (Ca18.5N7)[In4]2. The crystal structure of the isotypes (A19N7)[In4]2 (A = Ca, Sr; cubic, , Ca: a = 1471.65(3) pm; Sr: a = 1561.0(1) pm) contains isolated [In4] tetrahedra embedded in a framework of edge‐ and vertex‐sharing (A6N) octahedra. Six of these octahedra are condensed by edge‐sharing around one central A2+ ion to form “superoctahedra” (A19N6) which are connected three‐dimensionally via further octahedra by corner‐sharing. The crystal structure of (Ca4N)[In2] (tetragonal, I41/amd, a = 491.14(4) pm, c = 2907.7(3) pm) consists of alternating layers of perovskite type slabs of vertex‐sharing octahedra (Ca2Ca4/2N) and parallel arranged infinite zigzag chains equation/tex2gif-stack-1.gif[In2]. In the sense of Zintl‐type counting the compounds (A2+)19(N3?)7[(In2.125?)4]2 present an electron excess, (Ca2+)4(N3?)[(In2.5?)2] is electron deficient. Metallic properties are supported by electrical resistivity and magnetic susceptibility measurements. The analysis of the electronic structures gives evidence for the existence of homoatomic interactions In–In and significant heteroatomic metal–metal interactions Ca–In which favor the deviations of the title compounds from the (8 – N) rule.  相似文献   
302.
We report the synthesis and characterization of covalent dyads and multiads of electron acceptors (A) and donors (D), with the purpose of exploiting their nanophase separation behavior toward (a) two-dimensional (2D) surface patterning with well-defined integrated arrays of dissimilar molecular electronic features and (b) bulk self-assembly to noncovalent columnar versions of the so-called "double cable" systems, the likes of which could eventually provide side-by-side percolation pathways for electrons and holes in solar cells. Soluble, alkylated hexa-peri-hexabenzocoronenes (HBCs) bearing tethered anthraquinones (AQs) are shown by scanning tunneling microscopy (STM) to self-assemble at the solution-graphite interface into either defect-rich polycrystalline monolayers or extended 2D crystalline domains, depending on the number of tethered AQs. In the bulk, the thermal stability of the room-temperature HBC columnar phase is increased, which is attributed to the desired nanotriphase separation of HBC columns, insulating alkyl sheaths, and AQ units. Homeotropic alignment (columns normal to surfaces), predicted to be ideal for potential exploitation of such "double cables" in photovoltaic devices, is demonstrated.  相似文献   
303.
Structures of Bis(trifluoromethyl)halogeno and thiocyanato Mercurates, [Hg(CF3)2X] (X = Br, I, SCN), and a Comparison of the Structural Parameters of the CF3 Groups [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) and [P(CH3)(C6H5)3]2[Hg(CF3)2X]2 (X = Br (2) , I (3) ) are prepared and their crystal structures are determined. [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) crystallizes in the monoclinic space group P21/c with Z = 2, [P(CH3)(C6H5)3]2[Hg(CF3)2Br]2 (2) in the monoclinic space group P21/n with Z = 2 and [P(CH3)(C6H5)3]2[Hg(CF3)2I]2 (3) in the triclinic space group P1¯ with Z = 1. In the solid state the three compounds form dimeric anions with planar Hg2X2 rings. The structural parameters of the Hg(CF3)2 units in the till now known bis(trifluoromethyl)halogeno mercurates are compared. In all compounds one nearly symmetric and one distorted CF3 group exist. The largest differences of the C—F bond lengths is found for [(18‐C‐6)K][Hg(CF3)2I]. This can be regarded as the experimental evidence for the properties of trifluoromethyl mercury compounds to act as excellent difluorocarbene sources in the presence of alkali iodides.  相似文献   
304.
The synthesis of 8-aza-2′-deoxyadenosine ( = 7-amino-3H-1,2,3 triazolo[4,5-d]pyrimidine N3-(2′-deoxy-β-D-ribofuranoside); 1 ) as well as the N2- and N1-(2′-deoxy-β-D-ribofuranosides) 2 and 3 is described. Glycosylation of the anion of 7-amino-3H-1,2,3-triazolo[4,5-d]pyrimidine ( 6 ) in DMF yielded three regioisomeric protected 2′-deoxy-β-D-ribofuranosides, i.e. the N3-, N2-, and N4-glycosylated isomers 7 (14%), 9 (11%), and 11 (3%), respectively, together with nearly equal amounts of their α-D-anomers 8 (13%), 10 (12%), and 12 (4%; Scheme 1). The reaction became Stereoselective for the β-D-nucleosides if the anion of 7-methoxy-3H-1,2,3-triazolo[4,5-d]pyrimidine ( 13 ) was glycosylated in MeCN: only the N3-, N2, and N1-(2′-deoxy-β-D-nucleosides) 14 (29%), 15 (32%), and 16 (23%), respectively, were formed (Scheme 2). NH3 Treatment of the methoxynucleosides 14–16 afforded the aminonucleosides 1–3 . The anomeric configuration as well as the position of glycosylation were determined by combination of 13 C-NMR , 1 H-NMR , and 1D-NOE difference spectroscopy. Compound 1 proved to be a substrate for adenosine deaminase, whereas the regioisomers 2 and 3 were not deaminated.  相似文献   
305.
Phase-transfer glycosylation of 4-methoxy-1H-pyrazolo[3,4-d]pyrimidine with the 2-deoxyribofuranosyl chloride 9 formed the N(1)-β-nucleoside 10a as main product (39%). As by-products the α-D -anomer 11a (7%) and the N(2)-isomer 12a (18%) were isolated. Assignment of these isomers was made on the basis of their 1H- and 13C-NMR spectra. Removal of the sugar-protecting groups yielded the 4-methoxy-nucleosides 10b, 11b , and 12b , respectively. Nucleophilic displacement of the 4-MeO-group gave the 2-deoxyribofuranosides 1–4 of allopurinol and 4-amino-1H-pyrazolo[3,4-d]pyrimidine.  相似文献   
306.
Using specifically labelled compounds we have made a detailed study of the source of the hydrogen transferred in the elimination of C3H6 from the molecular ion of phenyln-propyl ether following electron impact ionization and from the protonated (and ethylated) molecule following chemical ionization. The migrating hydrogen originates from all three positions of the npropyl group but not in the ratio expected for randomization of the alkyl hydrogens prior to transfer. The source of the migrating hydrogen is similar for both electron impact ionization and chemical ionization, indicating that the factors governing the rearrangement are the same for both modes of ionization. From a comparison of the results for labelled 2,6-dimethyl phenyl n-propyl ethers with the results for the unsubstituted ether it is concluded that hydrogen transfer occurs only to the ether oxygen and not to the phenyl ring. A two-step mechanism involving a set of competing reversible hydrogen transfer reactions followed by C? O bond cleavage is proposed to explain the results.  相似文献   
307.
The reaction of methyl 2-bromo-6-(trifluoromethyl)-3-pyridinecarboxylate ( 1 ) with methanesulfonamide gave methyl 2-[(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridine-carboxylate ( 2 ). Alkylation of compound 2 with methyl iodide followed by cyclization of the resulting methyl 2-[methyl(methylsulfonyl)amino]-6-(trifluoromethyl)-3-pyridinecarboxylate ( 3 ) yielded 1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 4 ). The reaction of compound 4 with α,2,4-trichlorotoluene, methyl bromopropionate, methyl iodide, 3-trifluoromethylphenyl isocyanate, phenyl isocyanate and 2,4-dichloro-5-(2-propynyloxy)phenyl isothiocyanate gave, respectively, 4-[(2,4-dichlorophenyl)methoxy]-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazine 2,2-dioxide ( 5 ), methyl 2-[[1-methyl-2,2-dioxido-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4-yl]oxy]propanoate ( 6 ), 1,3,3-trimethyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2]thiazin-4(3H)-one 2,2-dioxide ( 7 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-[3-(trifluoromethyl)phenyl]-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 8 ), 4-hydroxy-1-methyl-7-(trifluoromethyl)-N-phenyl-1H-pyrido[2,3-c][1,2]thiazine-3-carboxamide 2,2-dioxide ( 9 ) and N-[2,4-dichloro-5-(2-propynyloxy)phenyl]-4-hydroxy-1-methyl-7-(trifluoromethyl)-1H-pyrido[2,3-c][1,2] thiazine-3-carboxamide 2,2-dioxide ( 10 ).  相似文献   
308.
The hydrolysis of trimethyltin(IV) has been studied by potentiometry (H+ -glass electrode) and calorimetry in various salt media (NaNO3, NaCl, KCl, Na2SO4, and NaNO3—NaCl mixtures). The effect of ionic strength on the hydrolysis constants is accounted for by a simple Debye–Hückel type equation and by Pitzer equations. The results allow us to obtain H for hydrolysis and the temperature dependence of the Pitzer parameters. The resulting coefficients can be used to examine the speciation of (CH3)3Sn+ in multicomponent electrolyte solutions, such as natural waters, over a wide range of temperature and ionic strength.  相似文献   
309.
Several scenarios were evaluated to explain the large "dendrimer effect" observed in the bromination of cyclohexene with H(2)O(2) and NaBr catalyzed by the addition of Frechét-type dendrimers terminating in -O(CH(2))(3)SePh groups. Although phenylseleninic acid was an efficient catalyst for the oxidation of NaBr with H(2)O(2), first-order rate constants for the selenoxide elimination were too small to produce PhSeO(2)H at a rate sufficient to explain the rates of catalysis and no dendrimer effect was observed in the rates of selenoxide elimination. An induction period was observed using 1-SePh as a catalyst for the oxidation of Br(-) with H(2)O(2). The addition of preformed selenoxide 1-Se(=O)Ph gave immediate catalysis with no induction period. However, rates of oxidation of the selenides with H(2)O(2) under homogeneous or biphasic conditions or with t-BuOOH under homogeneous conditions were too slow to account for the rates of catalysis, and no dendrimer effect was observed in the rates of oxidation. The primary oxidant for converting selenides to selenoxides was "Br(+)" produced initially by the uncatalyzed background reaction of H(2)O(2) with NaBr and then produced catalytically following formation of selenoxide groups. Autocatalysis is observed, and the rate of oxidation increases with the number of SePh groups. Autocatalysis is the source of the large dendrimer effect observed with the SePh series of catalysts.  相似文献   
310.
Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号