首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   24篇
化学   423篇
晶体学   10篇
力学   16篇
数学   48篇
物理学   90篇
  2023年   3篇
  2021年   5篇
  2020年   5篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   42篇
  2012年   29篇
  2011年   22篇
  2010年   12篇
  2009年   16篇
  2008年   19篇
  2007年   15篇
  2006年   18篇
  2005年   23篇
  2004年   23篇
  2003年   20篇
  2002年   35篇
  2001年   18篇
  2000年   10篇
  1999年   10篇
  1998年   3篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   9篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   11篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   13篇
  1984年   9篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   9篇
  1979年   11篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1975年   4篇
  1974年   6篇
  1973年   12篇
排序方式: 共有587条查询结果,搜索用时 343 毫秒
101.
102.
103.
104.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   
105.
An in‐vacuum double‐phase‐plate diffractometer for performing polarization scans combined with resonant X‐ray diffraction experiments is presented. The use of two phase plates enables the correction of some of the aberration effects owing to the divergence of the beam and its energy spread. A higher rate of rotated polarization is thus obtained in comparison with a system with only a single retarder. Consequently, thinner phase plates can be used to obtain the required rotated polarization rate. These results are particularly interesting for applications at low energy (e.g. 4 keV) where the absorption owing to the phase plate(s) plays a key role in the feasibility of these experiments. Measurements by means of polarization scans at the uranium M4 edge on UO2 enable the contributions of the magnetic and quadrupole ordering in the material to be disentangled.  相似文献   
106.
Recently, surface modifications on a commercial Ni/γ-Al2O3 catalyst during the production of methane from synthesis gas were investigated by quasi insitu X-ray photoelectron spectroscopy (XPS) [I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, A. Wokaun, Appl. Catal. A: Gen. 329 (2007) 68]. The conclusion was that the reactivity and the observed reaction mechanisms on the different Ni particles are influenced directly by both the size and the composition of the particles on the γ-Al2O3 support.In this investigation, Ni deposition and cluster growth on model catalyst samples (10 nm thick, polycrystalline γ-Al2O3 on Si(100)) were investigated by XPS. Several steps in the binding energy during Ni deposition indicate changes in the cluster growth. The molecular structure of the catalyst was investigated using Density Functional Theory calculations (StoBe) with a cluster model and non-local functional (RPBE) approach. An Al15O40H35 cluster was selected to represent the γ-Al2O3(100) surface. Ni clusters of different size were cut from a Ni(100) surface and deposited on the Al15O40H35 cluster in order to validate the deposition model determined by XPS.  相似文献   
107.
108.
The reaction of phospholide ions with imidoyl chlorides in the presence of tBuOK gives the alpha-iminophospholides that are isolated as their trimethylstannyl derivatives. These derivatives in turn react with metal chlorides to give complexes of the title ligands. A DFT study shows that substantial electronic delocalization takes place between the imino group and the phospholyl ring in these anions. The X-ray crystal structure of one stannylphosphole shows a highly pyramidal phosphorus atom (sum of angles = ca. 280 degrees ). A tetrameric copper complex has also been structurally characterized.  相似文献   
109.
We have studied the mechanism of formation CN- secondary ions under Cs+ primary ion bombardment. We have synthesized 13C and 15N labeled polyglycine samples with the distance between the two labels and the local atomic environment of the 13C label systematically varied. We have measured four masses in parallel: 12C, 13C, and two of 12C14N, 13C14N, 12C15N, and 13C15N. We have calculated the 13C/12C isotope ratio, and the different combinations of the CN isotope ratios (27CN/26CN, 28CN/27CN, and 28CN/26CN). We have measured a high 13C15N- secondary ion current from the 13C and 15N labeled polyglycines, even when the 13C and 15N labels are separated. By comparing the magnitude of the varied combinations of isotope ratios among the samples with different labeling positions, we conclude the following: CN- formation is in large fraction due to recombination of C and N; the CO double bond decreases the extent of CN- formation compared to the case where carbon is singly bonded to two hydrogen atoms; and double-labeling with 13C and 15N allows us to detect with high sensitivity the molecular ion 13C15N-.  相似文献   
110.
The investigation of ultrafast dynamics, taking place on the few to sub‐picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X‐ray free‐electron lasers (XFELs), providing very intense X‐ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub‐picosecond pulsed X‐ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY‐II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub‐picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X‐ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing‐induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号