首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3300篇
  免费   82篇
  国内免费   21篇
化学   2178篇
晶体学   38篇
力学   102篇
数学   521篇
物理学   564篇
  2022年   24篇
  2021年   34篇
  2020年   45篇
  2019年   41篇
  2018年   33篇
  2017年   25篇
  2016年   57篇
  2015年   59篇
  2014年   61篇
  2013年   169篇
  2012年   161篇
  2011年   167篇
  2010年   93篇
  2009年   81篇
  2008年   176篇
  2007年   155篇
  2006年   181篇
  2005年   150篇
  2004年   127篇
  2003年   107篇
  2002年   128篇
  2001年   43篇
  2000年   35篇
  1999年   42篇
  1998年   42篇
  1997年   40篇
  1996年   30篇
  1995年   31篇
  1994年   33篇
  1993年   42篇
  1992年   32篇
  1991年   36篇
  1990年   29篇
  1989年   41篇
  1988年   32篇
  1987年   23篇
  1986年   24篇
  1985年   49篇
  1984年   52篇
  1983年   41篇
  1982年   53篇
  1981年   55篇
  1980年   37篇
  1979年   30篇
  1978年   42篇
  1977年   35篇
  1976年   51篇
  1975年   34篇
  1974年   39篇
  1973年   38篇
排序方式: 共有3403条查询结果,搜索用时 15 毫秒
41.
In each monopole sector there exist an infinite number of finite energy solutions to the Prasad-Sommerfield limit of the SU(2) Yang-Mills-Higgs equations on 3 whose energy is greater than any finite number.National Science Foundation Postdoctoral Fellow in Mathematics  相似文献   
42.
We present a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using targets filled with xenon gas at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured shock quantities (electronic density and propagation velocity) are shown to be in good agreement with theory and numerical simulations.  相似文献   
43.
Stochastic classical trajectory simulations were used to study the efficiency of the energy exchange at the gas–liquid interface. Self-assembled monolayers (SAM) of long-chain functionalized molecules were used to mimic the liquid surface. Since the molecules in the monolayers are anchored by only one end, they retain some of the mobility that they have in the liquid but lose all their fluidity. The corrugation of the surface and the stiffness of the interface were tuned by varying the length of the molecules in the monolayers. The use of longer molecules leads to increased corrugation of the surface and provides additional dissipation channels that promote more efficient momentum and energy accommodation, increase the translational–rotational energy interconversion and enhance trapping. However, this “length effect” appears to saturate, as no further significant changes are observed in those properties when the monolayer's molecules's length is elongated from six to nine carbons. This saturation effect suggests that, even though monolayers can provide some of the mobility observed in liquid surfaces, they lack the energy dissipation channel provided by the fluidity of the liquid.  相似文献   
44.
The solvation effects observed in water‐organic solutions were studied by combining data for reaction kinetics and dissolution equilibria by means of a linear free‐energy (similarity) analysis. Kinetic data for the pH‐independent hydrolysis of (4‐methoxyphenyl)‐2,2‐dichloroacetate measured in this work and solubility data for naphthalene, and other substrates of low polarity, in aqueous binary mixtures of methanol, ethanol, acetonitrile, dimethyl sulfoxide (DMSO), and 1,4‐dioxane were used. Linear similarity relationships were discovered for these data over the full range of solvent compositions studied. To gain insight into the similarities observed between these different phenomena, molecular dynamics simulations were carried out for naphthalene and an ester in water–acetonitrile solutions. The results revealed considerable preferential solvation of these substrates by the co‐solvent. Linear relationships between the experimental data and the mole fractions of acetonitrile in the solvation shells of substrates were found. Surprisingly, a linear relationship was found between the mole fractions of acetonitrile in the solvation shells of the ester and naphthalene. This linearity indicated that a similar solvation mechanism governs even such different phenomena as dissolution and reaction kinetics. The relationships between the experimental data and the results of the molecular dynamics calculations found in this work explained the solvent effect observed in water‐organic solutions on the molecular level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
45.
X-ray free-electron lasers produce brief flashes of X-rays that are of about a billion times higher peak brightness than achievable from storage ring sources. Such a tremendous jump in X-ray source capabilities, which came in 2009 when the Linac Coherent Light Source began operations, was unprecedented in the history of X-ray science. Protein structure determination through the method of macromolecular crystallography has consistently benefited from the many increases in source performance from rotating anodes to all generations of synchrotron facilities. But when confronted with the prospects of such bright beams for structural biology, enthusiastic proposals were tempered by trepidation of the effects of such beams on samples and challenges to record data [1 M. Wilmanns, J. Synchr. Rad. 7, 41 (2000).[Crossref], [PubMed] [Google Scholar]]. A decade after these discussions (and others in the USA) on the applications of X-ray FELs for biology, the first experiments took place at LCLS, giving results that fulfilled many of the dreams of the early visionaries. In particular, the concept that diffraction representing the pristine object could be recorded before the X-ray pulse completely vaporizes the object was validated [2 H.N. Chapman, Nature 470, 73 (2011).[Crossref], [PubMed], [Web of Science ®] [Google Scholar]], confirming predictions [3 R. Neutze, Nature 406, 753 (2000).[Crossref], [Web of Science ®] [Google Scholar]] that established dose limits could be vastly exceeded using femtosecond-duration pulses. The first experiments illuminated a path to achieve room-temperature structures free of radiation damage, from samples too small to provide useful data at synchrotron facilities, as well as providing the means to carry out time-resolved crystallography at femtoseconds to milliseconds. In the five years since, progress has been substantial and rapid, invigorating the field of macromolecular crystallography [4 J.C.H. Spence and H.N. Chapman, Phi. Trans. Roy. Soc. B 369, 20130309 (2014).[Crossref], [PubMed], [Web of Science ®] [Google Scholar], 5 I. Schlichting, IUCrJ 2, 246 (2015).[Crossref], [PubMed], [Web of Science ®] [Google Scholar]]. This phase of development is far from over, but with both the LCLS and the SPring-8 Ångström Compact Free-electron Laser (SACLA) providing facilities for measurements, the benefits of X-ray FELs are already being translated into new biological insights.  相似文献   
46.
The age hardening 6061-T6 aluminium alloy has been chosen as structural material for the core vessel of the material testing Jules Horowitz nuclear reactor. The alloy contains incoherent Al(Cr, Fe, Mn)Si dispersoids whose characterization by energy-filtered transmission electron microscopy (EFTEM) analysis shows a core/shell organization tendency where the core is (Mn, Fe) rich, and the shell is Cr rich. The present work studies the stability of this organization under irradiation. TEM characterization on the same particles, before and after 1 MeV electron irradiation, reveals that the core/shell organization is enhanced after irradiation. It is proposed that the high level of point defects, created by irradiation, ensures a radiation-enhanced diffusion process favourable to the unmixing forces between (Fe, Mn) and Cr. Shell formation may result in the low-energy interface segregation of Cr atoms within the (Fe, Mn) system combined with the unmixing of Cr, Fe and Mn components.  相似文献   
47.
Polarized neutron reflectivity (PNR) is used to obtain the magnetic depth profile of an antiferromagnetically coupled ferrimagnetic/ferrimagnetic bilayer, Gd40Fe60/Tb12Fe88. This system shows a transition from positive to negative exchange bias field H(E) as the cooling field H(cf) is increased from small to large positive value. It also exhibits training behavior upon field cycling which affects H(E) and the coercive field H(C). From the PNR measurements at room temperature and at 15 K, we confirm that the magnetic configuration inside the TbFe layer is frozen when the sample is cooled in various H(cf). The thickness and pitch of the magnetic twist inside the TbFe layer depend on H(cf) and give rise to the observed differences in the bias field. Irreversible reorganization of the TbFe magnetization at the interface occurs upon GdFe magnetization reversal and is found to explain the training effect as well as the overall reduction in coercivity.  相似文献   
48.
We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean–Vlasov–Fokker–Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh–Nagumo model neurons, which are often used to approximate Hodgkin–Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.  相似文献   
49.
The method of oxygen isotope substitution in neutron diffraction is introduced as a site specific structural probe. It is employed to measure the structure of light versus heavy water, thus circumventing the assumption of isomorphism between H and D as used in more traditional neutron diffraction methods. The intramolecular and intermolecular O-H and O-D pair correlations are in excellent agreement with path integral molecular dynamics simulations, both techniques showing a difference of ?0.5% between the O-H and O-D intramolecular bond distances. The results support the validity of a competing quantum effects model for water in which its structural and dynamical properties are governed by an offset between intramolecular and intermolecular quantum contributions.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号