首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   23篇
  国内免费   8篇
化学   743篇
晶体学   4篇
力学   47篇
数学   64篇
物理学   141篇
  2023年   11篇
  2022年   14篇
  2021年   20篇
  2020年   22篇
  2019年   25篇
  2018年   17篇
  2017年   9篇
  2016年   15篇
  2015年   12篇
  2014年   33篇
  2013年   26篇
  2012年   50篇
  2011年   71篇
  2010年   42篇
  2009年   35篇
  2008年   63篇
  2007年   56篇
  2006年   56篇
  2005年   49篇
  2004年   60篇
  2003年   50篇
  2002年   39篇
  2001年   14篇
  2000年   9篇
  1999年   5篇
  1998年   11篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1993年   6篇
  1992年   6篇
  1990年   8篇
  1989年   4篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1982年   5篇
  1980年   7篇
  1978年   6篇
  1977年   7篇
  1975年   8篇
  1972年   4篇
  1970年   7篇
  1969年   6篇
  1968年   5篇
  1967年   7篇
  1927年   4篇
  1921年   4篇
  1920年   4篇
排序方式: 共有999条查询结果,搜索用时 15 毫秒
91.
92.
A novel bidentate Schiff base ligand L (L = N-(4-amino-2-chloro-phenyl)-2-hydroxybenzaldehyde) and the subsequent octahedral manganese(III) Schiff base complex MnL 3 have been synthesized and characterized by, FT-IR spectroscopy and elemental analyses (CHN). Additionally, Schiff base ligand has been characterized by 1H NMR spectroscopy. Thermogravimetric analysis of the ligand and its metal complexes reveals their thermal stability and decomposition pattern. Thus, the MnL 3 complex has been investigated as a novel precursor for the facile preparation of Mn3O4 nanoparticles via solid-state thermal decomposition under aerobic conditions, at a temperature of ca. 450 °C The resulting Mn3O4 nanocrystals were characterized by FT-IR spectroscopy, X-ray powder diffraction (XRPD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The XRPD studies reveal the characteristic diffraction peaks indexed to the Mn3O4 hausmanite structure, while the absence of additional peaks tends to clearly indicate the high purity of the sample. In addition, the TEM/SEM investigations displayed the nanoplate shape of the rather monodisperse crystalline Mn3O4 nanoparticles, with an average diameter of ca. 10 nm. The statistical distribution of the nanoparticles size has to be provided with an histogram graphic.  相似文献   
93.
In molecular imaging, multimodal imaging agents can provide complementary information, for improving the accuracy of disease diagnosis or enhancing patient management. In particular, optical/nuclear imaging may find important preclinical and clinical applications. To simplify the preparation of dual‐labeled imaging agents, we prepared versatile monomolecular multimodal imaging probe (MOMIP) platforms containing both a fluorescent dye (BODIPY) and a metal chelator (polyazamacrocycle). One of the MOMIP was conjugated to a cyclopeptide (i.e., octreotide) and radiolabeled with 111In. In vitro and in vivo studies of the resulting bioconjugate were conducted, highlighting the potential of these BODIPY‐based bimodal probes. This work also confirmed that the biovector and/or the bimodal probes must be chosen carefully, due to the impact of the MOMIP on the overall properties of the resulting imaging agent.  相似文献   
94.
This paper describes the development of an amperometric biosensor based on galactose oxidase (GAOx) immobilization within a laponite clay film deposited on Carbon Screen‐Printed Electrodes modified by electrodeposited Prussian Blue and coated with poly‐(O‐phenylenediamine) (PPD/PB/CSPEs). Amperometric performances of GAOx@laponite/PPD/PB/CSPEs bioelectrodes were determined using several GAOx substrates. Using these modified electrodes the reduction of enzymatically generated hydrogen peroxide was performed at ?0.2 V vs. Ag‐AgCl. In an initial attempt, E.Coli transketolase activity on its immobilized form was followed using a bienzymatic GAOx‐TK biosensor.  相似文献   
95.
Alkynes are used as building blocks in synthetic and medicinal chemistry, chemical biology, and materials science. Therefore, efficient methods for their synthesis are the subject of intensive research. Herein, we report the direct synthesis of alkynes from readily available carboxylic acids at room temperature under visible‐light irradiation. The combination of an iridium photocatalyst with ethynylbenziodoxolone (EBX) reagents allowed the decarboxylative alkynylation of carboxylic acids in good yields under mild conditions. The method could be applied to silyl‐, aryl‐, and alkyl‐ substituted alkynes. It was particularly successful in the case of α‐amino and α‐oxo acids derived from biomass.  相似文献   
96.
This study describes a synthesis of symmetric and dissymmetric bis[(perfluoroalkane)‐sulfonyl]imides by the reaction of the sodium salt of perfluoroalkanesulfonamide RFSO2NHNa+ (RF = C4F9, C6F13, C8F17) with hexamethyldisilazane and perfluoroalkanesulfonylfluoride RFSO2F (RF = C4F9, C6F13, C8F17). They are obtained, in two steps, in moderate overall yield. Moreover, this paper provides a study of their inhibition on bovine carbonic anhydrase. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:542–548, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20452  相似文献   
97.
Potentiometric titrations, fluorescence versus pH titrations, dynamic light scattering and fluorescence polarization anisotropy studies demonstrate that inside the nanodimensioned Triton X‐100 micelles, 1‐pyrenecarboxylic acid, PCOO?, forms an apical complex with the Zn2+ cation encircled by a lipophilic cyclen ligand and hugely increasing its fluorescence. The ability of the Zn2+‐cyclen‐PCOO? complex plus its micellar container to act as a fluorescent sensor to evaluate the lipophilicity of molecular species is demonstrated on the fatty acid series CH3(CH2)xCOOH (x=0–16). At pH 7.4 a decrease in fluorescence is observed on the addition of fatty acids that is directly related to their chain length, that is, to their tendency to enter the micellar containers, where they dislocate PCOO? from the Zn2+ centre. The independent determination of fatty acid pKa values in the presence of Triton X‐100 micelles confirms that our fluorescent micellar device is capable of sensing their lipophilicity.  相似文献   
98.
Halogen bonding is the noncovalent interaction where halogen atoms function as electrophilic species. The energetic and geometrical features of the interaction are described along with the atomic characteristics that confer molecules with the specific ability to interact through this interaction. Halogen bonding has an impact on all research fields where the control of intermolecular recognition and self-assembly processes plays a key role. Some principles are presented for crystal engineering based on halogen-bonding interactions. The potential of the interaction is also shown by applications in liquid crystals, magnetic and conducting materials, and biological systems.  相似文献   
99.
Due to their tunable optical properties and their well-defined nanometric size, core/shell nanocrystals (quantum dots, QDs) are extensively used for the design of biomarkers as well as for the preparation of nanostructured hybrid materials. It is thus of great interest to understand their interaction with soft lipidic membranes. Here we present the synthesis of water-soluble peptide CdSe/ZnS QDs and their interaction with the fluid lipidic membrane of vesicles. The use of short peptides results in the formation of small QDs presenting both high fluorescence quantum yield and high colloidal stability as well as a mean hydrodynamical diameter of 10 nm. Their interaction with oppositely charged vesicles of various surface charge and size results in the formation of hybrid giant or large unilamellar vesicles covered with a densely packed layer of QDs without any vesicle rupture, as demonstrated by fluorescence resonance energy transfer experiments, zetametry, and optical microscopy. The adhesion of nanocrystals onto the vesicle membrane appears to be sterically limited and induces the reversion of the surface charge of the vesicles. Therefore, their interaction with small unilamellar vesicles induces the formation of a well-defined lamellar hybrid condensed phase in which the QDs are densely packed in the plane of the layers, as shown by freeze-fracture electron microscopy and small-angle X-ray scattering. In this structure, strong undulations of the bilayer maximize the electrostatic interaction between the QDs and the bilayers, as previously observed in the case of DNA polyelectrolytes interacting with small vesicles.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号