首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4580篇
  免费   122篇
  国内免费   16篇
化学   2899篇
晶体学   13篇
力学   236篇
数学   797篇
物理学   773篇
  2023年   50篇
  2022年   138篇
  2021年   133篇
  2020年   109篇
  2019年   97篇
  2018年   82篇
  2017年   91篇
  2016年   185篇
  2015年   143篇
  2014年   141篇
  2013年   246篇
  2012年   259篇
  2011年   286篇
  2010年   173篇
  2009年   150篇
  2008年   280篇
  2007年   269篇
  2006年   222篇
  2005年   237篇
  2004年   162篇
  2003年   156篇
  2002年   112篇
  2001年   49篇
  2000年   47篇
  1999年   44篇
  1998年   32篇
  1997年   31篇
  1996年   52篇
  1995年   45篇
  1994年   37篇
  1993年   34篇
  1992年   27篇
  1991年   27篇
  1990年   28篇
  1989年   29篇
  1988年   29篇
  1987年   39篇
  1986年   23篇
  1985年   40篇
  1984年   38篇
  1983年   19篇
  1982年   23篇
  1981年   26篇
  1980年   27篇
  1979年   20篇
  1978年   16篇
  1977年   29篇
  1975年   16篇
  1974年   13篇
  1858年   11篇
排序方式: 共有4718条查询结果,搜索用时 0 毫秒
131.
Journal of Thermal Analysis and Calorimetry - The study of the binary system probenecid–benzamide is an excellent example of the power and the limits of thermal analysis applied to the...  相似文献   
132.
The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.  相似文献   
133.
Polyhydroxyalkanoates (PHAs) are well-known biodegradable plastics produced by various bacterial strains, whose major drawback is constituted by the high cost of their synthesis. Producing PHAs from mixed microbial cultures and employing organic wastes as a carbon source allows us to both reduce cost and valorize available renewable resources, such as food waste and sewage sludge. However, different types of pollutants, originally contained in organic matrices, could persist into the final product, thus compromising their safety. In this work, the exploitation of municipal wastes for PHA production is evaluated from the environmental and health safety aspect by determining the presence of polycyclic aromatic hydrocarbons (PAHs) in both commercial and waste-based PHA samples. Quantification of PAHs by gas chromatography-mass spectrometry on 24 PHA samples obtained in different conditions showed very low contamination levels, in the range of ppb to a few ppm. Moreover, the contaminant content seems to be dependent on the type of PHA stabilization and extraction, but independent from the type of feedstock. Commercial PHA derived from crops, selected for comparison, showed PAH content comparable to that detected in PHAs derived from organic fraction of municipal solid waste. Although there is no specific regulation on PAH maximum levels in PHAs, detected concentrations were consistently lower than threshold limit values set by regulation and guidelines for similar materials and/or applications. This suggests that the use of organic waste as substrate for PHA production is safe for both the human health and the environment.  相似文献   
134.
The consumers’ interest towards beer consumption has been on the rise during the past decade: new approaches and ingredients get tested, expanding the traditional recipe for brewing beer. As a consequence, the field of “beeromics” has also been constantly growing, as well as the demand for quick and exhaustive analytical methods. In this study, we propose a combination of nuclear magnetic resonance (NMR) spectroscopy and chemometrics to characterize beer. 1H-NMR spectra were collected and then analyzed using chemometric tools. An interval-based approach was applied to extract chemical features from the spectra to build a dataset of resolved relative concentrations. One aim of this work was to compare the results obtained using the full spectrum and the resolved approach: with a reasonable amount of time needed to obtain the resolved dataset, we show that the resolved information is comparable with the full spectrum information, but interpretability is greatly improved.  相似文献   
135.
To clarify the role played by water in facilitating long-range DNA charge transport, carefully designed, state-of-the-art, self-interaction corrected density-functional quantum mechanical and molecular mechanical (SIC-QM/MM) simulations are performed for the first time on two ionized adenine:thymine bridge models in explicit water solvent at finite temperature. For random solvent configurations, the charge is partially delocalized. However, a charge localization on different, well-separated adenines can be induced and is correlated with a restructuring of their first solvation shells. Thus, the importance of water in the mechanism of long-range charge transport is explicitly demonstrated, and the microscopic conditions for a charge localization are revealed.  相似文献   
136.
The luminophore Ru(bpy)2(dcbpy)2+ (bpy=2,2’-bipyridine; dcbpy=4,4’-dicarboxy-2,2’-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)32+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and “free” IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104 s−1) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2⊂NS-RuCh.  相似文献   
137.
This study deals with the application of two-dimensional proton nuclear magnetic resonance relaxometry (2D 1H NMR-R) to the characterization of porous ceramics nearly free of magnetic compounds. Different microstructural properties were obtained by firing a diamagnetic mixture of kaolin, calcium, and magnesium carbonate over a wide range of maximum temperatures (600–1100 °C) and firing times at the maximum temperature (soaking times) (0–10 h). The 2D 1H NMR-R method relies on the correlated measurement of 1H longitudinal (T 1) and transverse (T 2) relaxation times of pore-filling water by which the properties of the interconnected pore space may be investigated. In the absence of significant magnetic susceptibility effect due to para- and ferro-magnetic compounds, the 2D 1H NMR-R maps allow studying the conjoint effects on pore size distribution and inter-pore coupling due to the variations in both time and temperature of firing. The NMR experiments were performed with a low-field 1H NMR sensor, which allows non-destructive and in situ analysis. For ceramic specimens fired at 600 and 700 °C, the fraction of smallest pores increases with firing time at the expenses of those with intermediate size. The pore shrinkage occurring at this stage, and likely associated with the transformation of kaolinite in metakaolinite, is affected in a similar way by soaking time and firing temperature, in line with the concept of equivalent firing temperature. At temperatures from 800 to 1100 °C, the structural modifications involving interconnectivity and average pore size are driven primarily by firing temperature and, secondarily, by soaking time. The 2D 1H NMR-R results are confirmed by more traditional, but destructive, mineralogical, and structural analyses like X-ray powder diffraction, helium pycnometry, mercury intrusion porosimetry, and nitrogen adsorption/desorption method.  相似文献   
138.
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low‐dose high‐sensitivity three‐dimensional mammographic phase‐contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X‐ray energy, source size, detector resolution, sample‐to‐detector distance, scanning and data processing strategies in the case of propagation‐based phase‐contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast‐tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation‐based phase contrast and demonstrated significant improvement of the quality of phase‐contrast CT imaging compared with conventional (absorption‐based) CT, at medically acceptable radiation doses.  相似文献   
139.
A sustainable procedure for recycling powdered rubber coming from scrap tires (ground tire rubber [GTR]) is proposed as based on the dispersion in polyketone (PK) matrix, obtained in situ by CO/ethylene copolymerization. Three types of catalysts are used operative in solvents of different polarities. The catalyst productivity and the hybrids morphology are evaluated and optimized to final composites features. The obtained products are characterized by scanning electron microscopy, atomic force microscopy, and solvent extractions in order to investigate the occurrence and the extent of interactions between PK macromolecular chains and the GTR components; and their effects on the final properties were tested by differential scanning calorimetry, thermogravimetric analysis, and rheological measurements. For comparison purpose, a composite with GTR included into the matrix through blending is prepared. The results evidenced the key role exerted by the catalyst that, when operative in apolar solvent (able to swell the rubber phase), provides composites with good interfacial adhesion and breaking up of the particles with beneficial effects on final properties particularly thermal features and processability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
140.
Amylin or islet amyloid polypeptide (IAPP) is a 37‐residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β‐cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin‐degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper‐ and zinc‐induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion‐induced changes in substrate accessibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号