首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5591篇
  免费   155篇
  国内免费   19篇
化学   3393篇
晶体学   24篇
力学   280篇
数学   974篇
物理学   1094篇
  2024年   15篇
  2023年   82篇
  2022年   153篇
  2021年   198篇
  2020年   160篇
  2019年   115篇
  2018年   116篇
  2017年   109篇
  2016年   251篇
  2015年   175篇
  2014年   171篇
  2013年   311篇
  2012年   304篇
  2011年   337篇
  2010年   202篇
  2009年   184篇
  2008年   317篇
  2007年   302篇
  2006年   243篇
  2005年   257篇
  2004年   189篇
  2003年   175篇
  2002年   131篇
  2001年   65篇
  2000年   60篇
  1999年   60篇
  1998年   42篇
  1997年   38篇
  1996年   62篇
  1995年   48篇
  1994年   50篇
  1993年   39篇
  1992年   33篇
  1991年   35篇
  1990年   34篇
  1989年   40篇
  1988年   33篇
  1987年   46篇
  1986年   29篇
  1985年   47篇
  1984年   43篇
  1983年   27篇
  1982年   31篇
  1981年   34篇
  1980年   40篇
  1979年   26篇
  1978年   24篇
  1977年   37篇
  1975年   20篇
  1974年   16篇
排序方式: 共有5765条查询结果,搜索用时 15 毫秒
871.
This communication describes a simple, rapid and cost effective method of embedding a conductive and flexible material within microfluidic devices as a means to realize uniform electric fields within cellular microenvironments. Fluidic channels and electrodes are fabricated by traditional soft-lithography in conjunction with chemical etching of PDMS. Devices can be deformable (thus allowing for a combination of electro-mechanical stimulation), they are made from inexpensive materials and easily assembled by hand; this method is thus accessible to a wide range of laboratories and budgets.  相似文献   
872.
The anthraquinone profile, antioxidant and antimicrobial activities as well as the total phenol and total flavonoid contents were determined in methanol extracts of the barks of Rhamnus catharticus L. and R. orbiculatus Bornm. The most abundant anthraquinone derivatives in R. catharticus were physcion (67.8%) and emodin (26.2%), while R. orbiculatus contained mostly physcion (81.3%) and chrysophanol (14.6%). R. catharticus displayed better activity in the beta-carotene-linoleic acid assay, as well as chelating activity, whereas its activity in the reducing power assay was significantly lower than that of R. orbiculatus. Both methanol extracts showed antimicrobial activity against all microbial species tested (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, Aspergillus niger, Microsporum gypseum) with MIC values either equal to or lower than 2.50 mg/mL. R. catharticus and R. orbiculatus contained several anthranoid aglycones and their bark extracts demonstrated notable antioxidant and antimicrobial properties. The results obtained indicate the medicinal potential of these two species.  相似文献   
873.
The Apollonian packings (APs) of spheres are fractals that result from a space-filling procedure. We discuss the finite size effects for finite intervals s?∈?[s min,?s max] between the largest and the smallest sizes of the filling spheres. We derive a simple analytical generalization of the scale-free laws, which allows a quantitative study of such physical fractals. To test our result, a new efficient space-filling algorithm has been developed which generates random APs of spheres with a finite range of diameters: the correct asymptotic limit s min/s max?→?0 and the known APs' fractal dimensions are recovered and an excellent agreement with the generalized analytic laws is proved within the overall range of sizes.  相似文献   
874.
Hydroxyapatite (HA) is the main inorganic mineral that constitutes bone matrix and represents the most used biomaterial for bone regeneration. Over the years, it has been demonstrated that HA exhibits good biocompatibility, osteoconductivity, and osteoinductivity both in vitro and in vivo, and can be prepared by synthetic and natural sources via easy fabrication strategies. However, its low antibacterial property and its fragile nature restricts its usage for bone graft applications. In this study we functionalized a MgHA scaffold with gold nanorods (AuNRs) and evaluated its antibacterial effect against S. aureus and E. coli in both suspension and adhesion and its cytotoxicity over time (1 to 24 days). Results show that the AuNRs nano-functionalization improves the antibacterial activity with 100% bacterial reduction after 24 h. The toxicity study, however, indicates a 4.38-fold cell number decrease at 24 days. Although further optimization on nano-functionalization process are needed for cytotoxicity, these data indicated that Au-NRs nano-functionalization is a very promising method for improving the antibacterial properties of HA.  相似文献   
875.
876.
Sunto. Costruzione dei fondamenti della geometria numerativa (computo della costanti, conservazione del numero, calcolo simbolico, principio generalizzato diPlücker-Clebsch) dal punto di vista delle teorie (dovute all' Autore), che hanno fatto progredire e rinnovato tanta parte della moderna geometria algebrica (teoria della base, varietà virtuali, sistemi d'equivalenza, teoria generale delle corrispondenze). Teorema d'esistenza delle caratteristiche delle condizioni pure di data dimensione imposte agli elementi d'una varietà algebrica, anche in presenza di elementi degeneri. Applicazioni (teoria delle caratteristiche inerenti a spazi lineari, risoluzione generale del problema delle caratteristiche per le coniche d'un piano, base e modello minimo della varietà degli elementi lineari del piano) (1). Il mio primo lavoro è stato pubblicato negli ? Atti della R. Accademia delle Scienze di Torino ? (vol. XXXV, pag. 774) il 27 maggio 1900. Veramente io avevo già fatto stampare fin dal 1898 mentre ero studente presso una tipografia della mia nativa Arezzo, una noticina sull'estensione dei teoremi diPascal e diBrianchon. Non sapevo allora che l'estensione era nota.  相似文献   
877.
878.
polypropylene (PP) syntactic foams (SFs) containing hollow glass microspheres (HGMs) possess low density and elevated mechanical properties, which can be tuned according to the specific application. A possible way to improve their multifunctionality could be the incorporation of organic Phase Change Materials (PCMs), widely used for thermal energy storage (TES) applications. In the present work, a PCM constituted by encapsulated paraffin, having a melting temperature of 57 °C, was embedded in a compatibilized polypropylene SF by melt compounding and hot pressing at different relative amounts. The rheological, morphological, thermal, and mechanical properties of the prepared materials were systematically investigated. Rheological properties in the molten state were strongly affected by the introduction of both PCMs and HGMs. As expected, the introduction of HGMs reduced both the foam density and thermal conductivity, while the enthalpy of fusion (representing the TES capability) was proportional to the PCM concentration. The mechanical properties of these foams were improved by the incorporation of HGMs, while they were reduced by addition of PCMs. Therefore, the combination of PCMs and HGMs in a PP matrix generated multifunctional materials with tunable thermo-mechanical properties, with a wide range of applications in the automotive, oil, textile, electronics, and aerospace fields.  相似文献   
879.
Novel energy and atom efficiency processes will be keys to develop the sustainable chemical industry of the future. Electrification could play an important role, by allowing to fine-tune energy input and using the ideal redox agent: the electron. Here we demonstrate that a commercially available Milstein ruthenium catalyst (1) can be used to promote the electrochemical oxidation of ethanol to ethyl acetate and acetate, thus demonstrating the four electron oxidation under preparative conditions. Cyclic voltammetry and DFT-calculations are used to devise a possible catalytic cycle based on a thermal chemical step generating the key hydride intermediate. Successful electrification of Milstein-type catalysts opens a pathway to use alcohols as a renewable feedstock for the generation of esters and other key building blocks in organic chemistry, thus contributing to increase energy efficiency in organic redox chemistry.

Electrification of the Milstein catalyst enabled successful molecular electrocatalytic oxidation of ethanol to the four-electron products acetate and ethyl acetate.

In order to achieve the goals of the Sustainable Development Scenario (SDS) of the International Energy Agency, the chemical industry''s emission should decline by around 10% before 2030.1,2 This could be achieved by increasing energy efficiency and the usage of renewable feedstocks. In this respect, molecular electrocatalytic alcohol oxidation could be powerful tool by potentially providing energy and atom efficiency for organic synthesis and energy applications.2–7 Besides the use of aminoxyl-derivatives,8–13 especially the seminal work of Vizza, Bianchini and Grützmacher demonstrated that (transfer)-hydrogenation (TH) catalysts could be activated electrochemically and used in a so-called “organometallic fuel cell”.14 Other TH systems are however mostly limited to two electron oxidations of secondary or benzylic alcohols (Scheme 1A).15–21Open in a separate windowScheme 1(A) Advantages/limitation of electrochemical homogeneous alcohol oxidation using well-defined catalysts. (B) Current efforts to electrify acceptor-less alcohol dehydrogenation (AAD) systems due to their large range of application in thermal catalysis.As an exception, Waymouth et al. recently reported an example of the intramolecular coupling of vicinal benzylic alcohols to the corresponding esters.19,22 In order to extend the range of possible catalysts candidates, the Waymouth group recently also explored the possibility to use an iron-based acceptor-less alcohol dehydrogenation (AAD) catalysts23 for electrocatalytic alcohol oxidation (Scheme 1B).24 The stability under electrochemical conditions in this case is limited to <2 turnovers, but it opens the door to explore a wide range of AAD reactions under electrochemical conditions. Here, we demonstrate that a commercially available Milstein-type AAD catalyst (1)25 is competent for the electrocatalytic alcohol oxidation of ethanol to ethyl acetate and acetate (Scheme 1B).The cyclic voltammogram (CV) of complex 1 (Fig. 1) shows a quasi-reversible diffusive one electron oxidation wave at 0.2 V (all potentials are referenced vs. Fc+/Fc0) in 0.2 M NaPF6 THF/DFB (2 : 1) (DFB = 1,2 difluoro benzene) assigned to the Ru(ii)–Ru(iii) couple (see ESI, section 2.2). The addition of 1 to a 10 mM sodium ethoxide (NaOEt) solution in 200 mM ethanol (EtOH) in 0.1 M NaPF6 (2 : 1 THF/DFB) gives rise to several waves at ca. −0.5, 0.0 and 0.2 V with currents significantly higher than in the absence of catalysts or substrate, indicative of possible catalytic turnover (Fig. 2). Gradual increase of the EtOH concentration from 200 mM to 1 M is accompanied by the disappearance of the first wave at −0.5 V, while a new oxidation wave appears at ca. −0.25 V (Fig. 2, light to dark green traces).Open in a separate windowFig. 1Scan rate dependence of a 1 mM solution of 1 in in 2 : 1 THF/DFB + 0.2 M NaPF6 (from light to dark green: 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 V s−1, 3 mm GC electrode). Inset: evolution of the peak current as a function of the square root of the scan rate.Open in a separate windowFig. 2CVs of 10 mM NaOEt (grey) and of 5 mM 1 + 5 mM NaOEt with increasing concentrations of EtOH (from light to dark green: 200, 400, 600, 800 and 1000 mM) in 2 : 1 THF/DFB + 0.2 M NaPF6. Scan rate 0.1 V s−1, electrode: 3 mm diameter GC electrode.Increasing the base loading gradually from 5 to 20 mM yields a stark increase of current at this new wave at ca. −0.25 V (Fig. 3). Using (TBA)PF6 instead of NaPF6 (used to avoid Hofmann-elimination26) gave similar results (see ESI, section 2.2–2.5 and section 4). In order to assess catalytic turnover under preparative conditions, controlled potential electrolysis (CPE) was performed. CPE experiments were run in pure ethanol (to reduce cell resistance) in the presence of 0.1 M electrolyte of well soluble bases (e.g. NaOEt, LiOH, see ESI section 4). CPE in 0.1 M LiOH with 1 mM 1 at E = 0 V vs. Fc0/+ delivered ca. 15 mM of acetate and 6 mM of ethyl acetate, corresponding to 21 turnovers (per 4 electrons, or 42 turnovers per two electrons) and a faradaic efficiency (FE) of ca. 62% (see ESI section 4.3). In the absence of applied potential (OCP, open circuit potential), no ethyl acetate was formed (see ESI, section 4.4). Likewise, in the absence of catalyst, the passed charge was significantly lower (7C vs. 40C) with no detected formation of ethyl acetate. The low FE could be due to catalyst degradation, as Ru-nanoparticle formation is observed on the electrode post CPE (confirmed by SEM/Elemental mapping, see ESI section 5). Noteworthy, rinse-test CPE and a CPE using a simple Ru-precursor, RuCl3, did not show any ethyl acetate formation and gave similar results to blank experiments, indicating that Ru-nanoparticles are probably not the active catalyst species and that catalyst instability could be responsible for low FE. Further studies are underway to fully understand catalyst speciation under preparative conditions (see ESI section 4.7) the observed catalytic activity of 1 compares well in terms of TON and product selectivity with other molecular homogeneous TH systems, with most systems being limited to the two-electron oxidation of secondary or benzylic alcohols. The Waymouth group reported a NNC ruthenium pincer for the oxidation of isopropanol to acetone with a TON of 4.18 The same group reported on the usage of phenoxy mediators with an iridium pincer complex, reaching a TON of 8 for the same reaction.22 Bonitatibus and co-workers demonstrated the activity of an iridium-based systems with a TON of 32 for the formation of p-benzaldehyde.17 Appel and co-workers reported on a nickel (TON = 3.1)15 and a cobalt triphos systems (TON = 19.9)16 for benzaldehyde formation from benzyl alcohol. To the best of our knowledge, there is only one acceptor-less alcohol dehydrogenation (AAD) catalyst that has been activated electrochemically so-far,24 generating acetone with a TON <2. Only a handful of molecular systems are known to catalyze the electrochemical four electron alcohol reformation to esters, however at significantly higher potentials (1.15 V vs. Fc+/Fc0).2,27,28 Thus, although not designed for electrochemical applications, 1 shows high activity for the challenging 4 electron oxidation of aliphatic substrates.Open in a separate windowFig. 3CV of 5 mM NaOEt (grey), 5 mM of 1 + 1 M EtOH with varying concentrations of base (5, 10, 15, and 20 mM NaOEt, light to dark green) in 2 : 1 THF/DFB + 0.2 M NaPF6. Scan rate 0.1 V s−1, electrode: 3 mm diameter GC electrode.To achieve the transposition from thermal to electrochemical TH, both Grützmacher et al. and Waymouth took advantage of a fast equilibrium between the alcohol substrate and a metal hydride intermediate that could be readily oxidized. The chemistry of ruthenium pincer AAD systems is well studied (Scheme 2)25,29–33 and allows for a putative assignment of the observed CV-behavior. In the presence of excess base and alcohol (Fig. 2 and and3),3), 1 is expected to yield dearomatized complex 2,25 as well as the alkoxide species 3.25,32 We might therefore assign the first wave at −0.5 V to the oxidation of dearomatized complex 2 and the wave around 0 V to the oxidation of the alkoxide complex 3. Indeed, independently synthesized samples of 2 and 3 (in the presence of excess ethanol) give rise to oxidation half-waves at −0.45 V and −0.1 V respectively (see ESI, section 3 and 5.2). This is also in agreement with the observed behavior upon increasing the alcohol concentration with the expected consumption of dearomatized species 2 and concomitant disappearance of the first oxidation wave at −0.5 V. The equilibrium between 2, 3 and 4 has been reported32 and addition of excess ethanol to 2 is thus not only generating 3, but also is expected to deliver 4 (Scheme 2). The appearance of a new anodic wave at ca. −0.25 V (Fig. 2) is thus attributed to the increasing formation of 4 upon addition of larger amounts of EtOH. Complex 4 is relatively unstable in solution,25,32,33 and decomposes in the presence of electrolyte (see ESI section 3.1). DFT calculations were thus used to predict its oxidation potential (see ESI, section 6), which was in reasonable agreement with the observed wave (−0.19 V). The DFT calculations also confirmed the assignment of the other waves related to the dearomatized complex 2 (−0.33 V) and the ethoxide species 3 (−0.1 V). A more detailed mechanistic analysis remains currently hampered by the chemical instability of 4 under the employed reaction conditions, as well as difficulties to isolate 3 in the solid state (limiting kinetic measurements). DFT calculations were thus used to get a better view on possible reaction pathways (Schemes 2, ,33 and ESI section 6.3). The oxidation of 4 at −0.19 V (DFT) yields the radical cation 5, with a calculated pKa in THF of 8.2. In the presence of NaOEt, 5 should thus deprotonate readily to give radical 6, which has an extremely negative oxidation potential of −2.1 V. At the potential it is generated, 6 should thus directly be oxidized to cationic complex 7. This cationic species 7 has a calculated pKa of 22.7 in THF, which is in good agreement with experimental data from the Saouma group on a similar system.26 The high pKa of 7 in THF also validates the need for a strong base (e.g. NaOEt) to reform dearomatized 2. Both Grützmacher and co-workers,14 as well as Waymouth24 have noted that the accelerating effect during electrocatalysis stems from the oxidation of a metal hydride intermediate that is generated by fast chemical steps. In order to verify this hypothesis and to exclude an electrochemical activation of this hydride formation step, transition state barriers were computed (Scheme 3). Taking the dearomatized complex 2 as a reference point, a first step will form the alkoxide species 3 (TS0 = 21.2 kcal mol−1). Oxidizing 2 to 8 slows down the formation of the alkoxide species (TS0ox = 27.5 kcal mol−1), most-likely due to decreased basicity of the ligand. From the alkoxide species 3 dihydride 4 is formed via a linear, charge-separated transition state TS1 (15.7 kcal mol−1). The role of such linear transition states was highlighted recently in the case of ruthenium pincer catalysis for alcohol oxidation.34–37 In principle, it might be envisioned that the oxidation of the metal center could be an additional driving force for this hydride abstraction step. However, after oxidation, the energy span38,39 rises by about 11 kcal mol−1 (TS1ox = 24.7 kcal mol−1). Likewise, a beta-hydride elimination via side-arm opening is not accelerated either by oxidation (TS2ox = 37.5 kcal mol−1, see ESI section 6.4). It thus seems that the generation of 4 is not accelerated by electron transfer steps and relies on a thermally activated chemical step. Importantly, alkoxide solutions were shown to be excellent hydride donors electrochemically, further corroborating that under the employed basic conditions, generation of 4 from 3 should be fast.40 Oxidation of 4 to 5 also doesn''t accelerate thermal intramolecular release of H2 (TS3Box = 37.5 kcal mol−1), which is significantly higher than neutral thermal H2-releasing states (TS3A and TS3B). The experimentally observed acceleration via electron-transfer is thus proposed to follow a classical ECEC mechanism initiated by the oxidation of 4 to 5 (at roughly −0.19 V (DFT)), followed by deprotonation and re-oxidation as described above, finally delivering 2 at the electrode surface. Importantly, at the electrode surface 2 and 3 should be oxidized at the employed potentials, but based on DFT-calculations, these pathways are thought to be non-productive (Scheme 3) and could explain the low catalyst life-time and degradation under electrochemical conditions.Open in a separate windowScheme 2Reactivity of pyridine-based ruthenium complexes via dearomatization/aromatization, as well as DFT-based.Open in a separate windowScheme 3DFT-calculated energy landscape for the neutral (black dotted lines and bars) and cationic surface (blue dotted lines and bars) of ethanol dehydrogenation starting from 2 or its cationic analogue 8.  相似文献   
880.
FT-ICR MS (Fourier-transform ion cyclotron resonance mass spectrometry) analysis has shown great potential to aid in the understanding of the extremely high molecular diversity of cloud water samples. The main goal of this work was to determine the differences in terms of formula assignment for analytical (i.e., measurement replicates) and experimental replicates of a given cloud water sample. The experimental replicates, obtained by solid phase extraction, were also compared to the results obtained for freeze-dried samples to evaluate whether the presence of salts interferes with the analysis. Two S/N ratios, generally adopted for atmospheric samples, were evaluated, and three different algorithms were used for assignment: DataAnalysis 5.3 (Bruker), Composer (Sierra Analytics), and MFAssignR (Chemical Advanced Resolution Methods Lab). In contrast to other works, we wanted to treat this comparison from the point of view of users, who usually must deal with a simple list of m/z ratios and intensity with limited access to the mass spectrum characteristics. The aim of this study was to establish a methodology for the treatment of atmospheric aqueous samples in light of the comparison of three different software programs, to enhance the possibility of data comparison within samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号