首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   12篇
化学   161篇
晶体学   1篇
力学   11篇
数学   25篇
物理学   32篇
  2022年   2篇
  2021年   6篇
  2020年   16篇
  2019年   8篇
  2018年   15篇
  2017年   12篇
  2016年   16篇
  2015年   17篇
  2014年   16篇
  2013年   42篇
  2012年   24篇
  2011年   11篇
  2010年   11篇
  2009年   3篇
  2008年   7篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1993年   3篇
  1983年   1篇
排序方式: 共有230条查询结果,搜索用时 156 毫秒
221.
Aldoximes undergo rapid dehydration with sodium sulfite, thionyl chloride, under mild reaction condition to afford nitriles in excellent isolated yields. Dehydration reactions were performed in solvent and under solvent free conditions.  相似文献   
222.
Solar light and blue light irradiation of the commercially available heterogeneous nano photocatalyst TiO2–P25 leads to reduction of nitro compounds to give the corresponding amines. The methodology provides a green and mild approach to this useful class of organic compounds. Aromatic nitro compounds containing a wide range of functional groups tolerated the conditions to give, chemoselectively the corresponding amines in excellent yields.  相似文献   
223.
Iron oxides are considered as the promising pseudocapacitive materials for high-performance supercapacitors due to their high theoretical specific capacitance, low cost, environmental benignity, and natural abundance. In this work, we study capacitive behavior of different magnetite (Fe3O4) nanoparticles/carbon black (CB) composites ratios. These composites are synthesized by the coprecipitation method in the presence of ultrasonic waves. The structural and morphological characteristics of the magnetite/CB composites are investigated by X-ray diffraction and scanning electron microscopy, respectively. The electrochemical performance of magnetite/CB composite electrodes is tested by cyclic voltammetry and galvanostatic charge/discharge in a Na2SO4 electrolyte. The results indicate that the magnetite/CB electrodes show typical pseudo-capacitive behavior in Na2SO4 solution. Moreover, in comparison to the pure Fe3O4 (37 F g?1) and carbon black (23 F g?1), the as-prepared 45 % magnetite/CB nanocomposite electrode shows a higher specific capacitance (300 F g?1). Additionally, the supercapacitor device of the magnetite/CB nanocomposite exhibits excellent long cycle life along with 98.5 % specific capacitance retained after 10,000 cycle tests.  相似文献   
224.
A new fiber based on the electrochemical reduction of graphene oxide was prepared on a copper wire for solid‐phase microextraction (SPME) applications. The prepared fiber was used for the SPME and gas chromatographic analysis of tricyclic antidepressants (TCADs), including amitriptyline, trimipramine, and clomipramine. The feasibility of direct‐immersion and headspace modes of SPME for the determination of TCADs was studied. The effects of four parameters including pH, salt content, extraction temperature with and without cooling the fiber, and extraction time were investigated. The comparison showed that headspace cold fiber SPME results in the best outcome for the extraction of TCADs. Under the optimized conditions of this mode, the calibration curves were linear between 2.0 and 500 ng/mL and the detection limits were between 0.30 and 0.53 ng/mL. The intraday and interday RSDs obtained at 20 ng/mL (n = 5), using a single fiber, were 5.5–9.0 and 7.5–9.8, respectively. The fiber to fiber repeatability (n = 4), expressed as the RSD, was between 12.8 and 13.2% at a 20 ng/mL concentration level. The method was successfully applied to the analysis of TCADs in plasma samples showing recoveries from 73 to 96%.  相似文献   
225.
Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.  相似文献   
226.
The simple preparation of Co3O4 nanoparticles from a solid metallorganic molecular precursor [bis(salicylaldehydeato)cobal(II)]; [Co(sal)2] has been achieved via two simple steps: firstly, the [Co(sal)2] precursor was precipitated from the reaction of cobalt(II) acetate and salicylaldehyde; in propanol under nitrogen condition; then, cubic phase Co3O4 nanoparticles with the size of mostly 20–30 nm could be produced by thermal treatment of the [Co(sal)2] in air at 500 °C for 5 h. The as-synthesized products were characterized by powder XRD, FT-IR, TEM and SEM. The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanoparticles. The optical absorption spectrum indicates that the direct band gaps of Co3O4 nanoparticles are 1.53 and 2.02 eV. The optical property test indicates that the absorption peak of the nanoparticles shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors the enhanced coercivity (H c ) and decreased saturation magnetization (M s ) in contrast to their respective bulk materials.  相似文献   
227.
The complexation processes between Fe3+, Y3+, Cd2+, Sn4+, Ce3+ and Au3+ metal cations with macrocyclic ligand, 4′-nitrobenzo-15-crown-5 (4′NB15C5), were studied in acetonitrile (AN), methanol (MeOH) and nitromethane (NM) solvents at different temperatures using conductometric method. The conductance data show that the stoichiometry of the complexes formed between this macrocyclic ligand and Cd2+, Au3+ cations is 1: 1 (ML), but in the case of Fe3+, Y3+ and Ce3+ metal cations, 2: 1 (M2: L) and 2: 2 [M2: L2] complexes are formed in nitromethane solutions. The results show, that the selectivity of 4’NB15C5 for the studied metal cations in methanol solutions at 15°C is: Sn4+ > Cd2+ > Y3+ > Fe3+ ∼ Ce3+ > Au3+, but in the case of acetonitrile, the stability order was found to be: Y3+ > Au3+ > Fe3+ > Cd2+. The values of stability constants of the 1: 1 [M: L] complexes were determined from conductometric data using a GENPLOT computer program. The values of thermodynamic parameter (ΔH c o and ΔH c o) for formation of the complexes were obtained from temperature dependence of the stability constants, using the van’t Hoff plots. The results show that the values of standard enthalpy (ΔH c o) and standard entropy (ΔH c o) change with the nature of the non aqueous solvents.  相似文献   
228.
Conventional data envelopment analysis (DEA) models assume real-valued inputs and outputs. In many occasions, some inputs and/or outputs can only take integer values. In some cases, rounding the DEA solution to the nearest whole number can lead to misleading efficiency assessments and performance targets. This paper develops the axiomatic foundation for DEA in the case of integer-valued data, introducing new axioms of “natural disposability” and “natural divisibility”. We derive a DEA production possibility set that satisfies the minimum extrapolation principle under our refined set of axioms. We also present a mixed integer linear programming formula for computing efficiency scores. An empirical application to Iranian university departments illustrates the approach.  相似文献   
229.
In the derivation of holographic dark energy density, the area law of the black hole entropy plays a crucial role. However, the entropy-area relation can be modified from the inclusion of quantum effects, motivated from the loop quantum gravity, string theory and black hole physics. In this paper, we study cosmological implication of the interacting entropy-corrected holographic dark energy model in the framework of Brans–Dicke cosmology. We obtain the equation of state and the deceleration parameters of the entropy-corrected holographic dark energy in a non-flat Universe. As system’s IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as Lar(t). We find out that when the entropy-corrected holographic dark energy is combined with the Brans–Dicke field, the transition from normal state where w D > −1 to the phantom regime where w D < −1 for the equation of state of interacting dark energy can be more easily achieved for than when resort to the Einstein field equations is made.  相似文献   
230.
Motivated by the recent works of one of us (Karami and Fehri, Int. J. Theor. Phys. 49:1118, 2010; Phys. Lett. B 684:61, 2010), we study the holographic dark energy in Brans-Dicke gravity with the Granda-Oliveros cut-off proposed recently in literature. We find out that when the present model is combined with Brans-Dicke field the transition from normal state where w D >−1 to the phantom regime where w D <−1 for the equation of state of dark energy can be more easily achieved for than when resort to the Einstein field equations is made. Furthermore, the phantom crossing is more easily achieved when the matter and the holographic dark energy undergo an exotic interaction. We also calculate some relevant cosmological parameters and their evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号