首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   14篇
  国内免费   3篇
化学   190篇
力学   5篇
数学   16篇
物理学   32篇
  2023年   1篇
  2022年   9篇
  2021年   6篇
  2020年   8篇
  2019年   14篇
  2018年   23篇
  2017年   13篇
  2016年   20篇
  2015年   10篇
  2014年   19篇
  2013年   28篇
  2012年   26篇
  2011年   13篇
  2010年   20篇
  2009年   8篇
  2008年   8篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2000年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有243条查询结果,搜索用时 312 毫秒
31.
Heterotrophic denitrification of drinking water was enhanced by selection of an anoxic sludge taken from a dairy industry among the sludges taken from various industries, and the effect of carbon sources was examined. Acclimatization to high nitrate concentration was then carried out in a five-stage process. Considering removals of both nitrate and nitrite, the sludge taken from anoxic unit of Tehran Pegah dairy industry was shown to be the superior microbial culture, with ethanol as carbon source as compared to acetate. To enhance the rate of denitrification, acclimatization to nitrate (at 100, 200, 400, 800, and 1,600 mg N-NO3/L) was carried out in sequencing batch reactors over a 3-month period under anoxic condition, and comparisons were made between the performances of acclimated and non-acclimated sludges at each stage. It was found that acclimatization up to the fourth stage enhanced the specific denitrification rate to a high value of 29.6 mg N-NO3/h/g mixed liquor suspended solids (MLSS), with no significant nitrite accumulation. Additionally, the effect of initial pH (6, 6.5, 7, and 7.5) and carbon-to-nitrogen (C/N) ratio (1, 1.5, 2, and 3) on the performance of this final acclimated sludge was assessed, where initial pH of 7 and C/N ratio of 1.5 resulted in the best performances considering both nitrate and nitrite removal.  相似文献   
32.
Periodica Mathematica Hungarica - In this paper, first we study surjective isometries (not necessarily linear) between completely regular subspaces A and B of $$C_0(X,E)$$ and $$C_0(Y,F)$$ where X...  相似文献   
33.
Ternary monomer reactivity ratios of triisopropylsilyl acrylate (SiA), methyl methacrylate (MMA), and n‐butyl acrylate (BA), as common monomers in self‐polishing coatings (SPCs) binders are obtained using experimental data collected from free radical bulk polymerization at 70 °C. Different terpolymerizations at low and medium‐high conversions are performed at optimized feed compositions. Estimations are made using the error‐in‐variables model (EVM) framework, applying the recast form of the Alfrey–Goldfinger (AG) model and a direct numerical integration (DNI) approach to the collected data. Estimations from individual low and medium‐high conversion data are compared to those found with the combined data (full conversion range data). The highest certainty in point estimates are obtained with analysis of the full conversion range data. Furthermore, the reactivity ratios determined from the combined data fall between those found with analysis of individual low and medium‐high conversion data, another corroboration of reliable data collection. Reactivity ratios determined from analysis of the combined data (rSiA/MMA = 0.4185, rMMA/SiA = 1.3754, rSiA/BA = 0.8739, rBA/SiA = 0.5736, rBA/MMA = 0.3692, rMMA/BA = 1.7919) are used in the recast AG model to predict cumulative terpolymer composition as a function of conversion. The experimental data and model prediction show satisfactory agreement.  相似文献   
34.
In order to reach an antibacterial, photocatalytic, and hydrophilic coating, commercial grade polyurethane (CPU) resin was modified with silver ion exchanged montmorillonite/TiO2 nanocomposite in various montmorillonite to TiO2 nanoparticle ratios. To characterize the prepared nanocomposites and coatings, X-ray diffraction patterns, FTIR and UV–Vis spectroscopy and SEM images were used. The modified commercial grade polyurethane coatings containing nanocomposites show better properties, including hydrophilicity, degradation of organic pollutants, antibacterial activity and water resistivity, compared to unmodified commercial grade polyurethane coatings. The water droplet contact angle of unmodified CPU coating was 70°, however it decreased to lower than 10° in modified CPU coatings after 24 h LED lamp irradiation. Decolorization efficiency of malachite green dye solution by the use of modified CPU coatings achieved up to 70% after 5 h LED lamp illumination, compared to less than 5% for unmodified CPU coatings. Modified CPU coatings also showed significant water resistivity and antibacterial properties.  相似文献   
35.
Molecular dynamics simulations were used to characterize the binding of the chiral drugs chlorthalidone and lorazepam to the molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The project’s goal was to characterize the nature of chiral recognition in capillary electrophoresis separations that use molecular micelles as the chiral selector. The shapes and charge distributions of the chiral molecules investigated, their orientations within the molecular micelle chiral binding pockets, and the formation of stereoselective intermolecular hydrogen bonds with the molecular micelle were all found to play key roles in determining where and how lorazepam and chlorthalidone enantiomers interacted with the molecular micelle.  相似文献   
36.
In this work, an ecofriendly and economic strategy for synthesize of CuO and Co3O4 were developed using extracted Sesbania sesban solution (ESS) as a reducing and stabilizing agent, and bioreactor. These novel nano metal oxides (NMOs) were characterized by high-resolution-transmission electron microscopy (TEM), EDAX thermo gravimetric analysis and X-ray diffraction (XRD). Morphology and size of them were investigated by TEM and the average sizes of for spherical CuO and Co3O4 nanoparticles are 20–40 and 15–30 nm, respectively. The XRD and EDAX confirmed the high purity for NMOs. The thermal behaviors of the NMOs exhibited good crystallographic stability within the investigated temperature range. The antioxidant and antibacterial activities of NMOs were investigated and compared to manganese(III) meso-tetraphenylporphyrin complex/Ag nanocomposite (Ag/P nanocomposite) synthesizing by ESS. The results obtained from this work showed that copper(II) oxide, cobalt oxide nanoparticles, and Ag/P nanocomposite have DPPH scavenging activity. On the other hand, NMOs have no antibacterial activity against Gram-negative bacterial strains. Cobalt oxide nanoparticles have antibacterial activity against Staphylococcus aureus, while Ag/P nanocomposite showed the antibacterial activities against both Gram-negative and Gram-positive bacterial strains.  相似文献   
37.
In the present study, paclitaxel (PTX), multi-walled carbon nanotubes (MWCNTs), and doxorubicin (DOX) have been simultaneously doped into the poly(ϵ-caprolactone) (PCL)/chitosan/zein core-shell nanofibers to increase its cytotoxicity for MCF-7 breast cancers killing. The physico-chemical properties of synthesized nanofibers were determined by scanning electron microscope, Fourier-transform infrared spectroscopy, tensile strength, and degradation rate determinations. The in vitro release studies demonstrated the sustained release of drugs from core-shell nanofibrous scaffold. The cytotoxicity and compatibility of core-shell nanofibers were investigated by their treating with MCF-7 breast cancer cells and L929 normal cells, respectively. PCL/PTX/chitosan/zein/MWCNTs/DOX core-shell nanofibers containing 1 wt% MWCNTs, 100 μg ml−1 DOX and 100 μg ml−1 PTX had a high biocompatibility with a 84% MCF-7 cancer cells killing. The in vivo studies revealed the synergic effects of MWCNTs and anticancer drugs on the tumor inhibition. This method could be considered as a new way for developing of MWCNTs loaded-nanofibers for cancer treatment in future.  相似文献   
38.
By a new method of modeling, the DLVO energy interaction between rough nanoparticles and rough surfaces is investigated at various conditions. Rippled sphere model and surface element integration method are used. For calculation of energy interaction, the spherical coordinates are used and by increasing the radius ratio of two particles, the pseudo flat surfaces are generated. With increasing the radius ratio of two particles to 50, the large particle behaves as flat surface in front of small particle. Roughness, size of particles, temperature, zeta potential, capacity, and concentration of ions, which influence the stability of nanocolloidal solutions, are considered by the new method. Spherical coordinates enable to model the rough nanoparticles and rough surfaces so that no simplifying assumptions are needed, which was very difficult and time-consuming in Cartesian coordinate system. New method could predict the effect of different parameters on the stability of nanocolloidal systems precisely, easily, and at short times in comparison to Cartesian coordinate.  相似文献   
39.
This article investigates the stabilization and control problems for a general active fault‐tolerant control system (AFTCS) in a stochastic framework. The novelty of the research lies in utilizing uncertain nonhomogeneous Markovian structures to take account for the imperfect fault detection and diagnosis (FDD) algorithms of the AFTCS. The underlying AFTCS is supposed to be modeled by two random processes of Markov type; one characterizing the system fault process and the other describing the FDD process. It is assumed that the FDD algorithm is imperfect and provides inaccurate Markovian parameters for the FDD process. Specifically, it provides uncertain transition rates (TRs); the TRs that lie in an interval without any particular structures. This framework is more consistent with real‐world applications to accommodate different types of faults. It is more general than the previously developed AFTCSs because of eliminating the need for an accurate estimation of the fault process. To solve the stabilizability and the controller design problems of this AFTCS, the whole system is viewed as an uncertain nonhomogeneous Markovian jump linear system (NHMJLS) with time‐varying and uncertain specifications. Based on the multiple and stochastic Lyapunov function for the NHMJLS, first a sufficient condition is obtained to analyze the system stabilizability and then, the controller gains are synthesized. Unlike the previous fault‐tolerant controllers, the proposed robust controller only needs to access the FDD process, besides it is easily obtainable through the existing optimization techniques. It is successfully tested on a practical inverted pendulum controlled by a fault‐prone DC motor. © 2016 Wiley Periodicals, Inc. Complexity 21: 318–329, 2016  相似文献   
40.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号