首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2966篇
  免费   164篇
  国内免费   8篇
化学   1954篇
晶体学   3篇
力学   63篇
数学   565篇
物理学   553篇
  2023年   64篇
  2022年   56篇
  2021年   79篇
  2020年   121篇
  2019年   111篇
  2018年   48篇
  2017年   62篇
  2016年   129篇
  2015年   108篇
  2014年   107篇
  2013年   120篇
  2012年   188篇
  2011年   195篇
  2010年   119篇
  2009年   90篇
  2008年   143篇
  2007年   120篇
  2006年   121篇
  2005年   99篇
  2004年   77篇
  2003年   69篇
  2002年   67篇
  2001年   30篇
  2000年   34篇
  1999年   18篇
  1998年   23篇
  1997年   19篇
  1996年   18篇
  1995年   22篇
  1994年   19篇
  1993年   12篇
  1992年   14篇
  1991年   17篇
  1989年   13篇
  1988年   11篇
  1986年   14篇
  1985年   16篇
  1984年   16篇
  1983年   14篇
  1982年   15篇
  1981年   19篇
  1980年   18篇
  1979年   17篇
  1978年   14篇
  1977年   23篇
  1976年   16篇
  1975年   16篇
  1974年   11篇
  1934年   14篇
  1930年   11篇
排序方式: 共有3138条查询结果,搜索用时 15 毫秒
111.
The long-time behavior of transport coefficients in a model for spatially heterogeneous media in two and three dimensions is investigated by molecular dynamics simulations. The behavior of the velocity autocorrelation function is rationalized in terms of a competition of the critical relaxation due to the underlying percolation transition and the hydrodynamic power-law anomalies. In two dimensions and in the absence of a diffusive mode, another power-law anomaly due to trapping is found with an exponent -3 instead of -2. Further, the logarithmic divergence of the Burnett coefficient is corroborated in the dilute limit; at finite density, however, it is dominated by stronger divergences.  相似文献   
112.
Simple scaling laws are useful tools in understanding the effect of changing parameters in MRI experiments. In this paper the general scaling behavior of the transverse relaxation times is discussed. We consider the dephasing of spins diffusing around a field inhomogeneity inside a voxel. The strong collision approximation is used to describe the diffusion process. The obtained scaling laws are valid over the whole dynamic range from motional narrowing to static dephasing. The dependence of the relaxation times on the external magnetic field, diffusion coefficients of the surrounding medium, and the characteristic scale of the field inhomogeneity is analyzed. For illustration the generally valid scaling laws are applied to the special case of a capillary, usually used as a model of the myocardial BOLD effect.  相似文献   
113.
The chemical background of olfactory perception has been subject of intensive research, but no available model can fully explain the sense of smell. There are also inconsistent results on the role of the isotopology of molecules. In experiments with human subjects it was found that the isotope effect is weak with acetone and D6-acetone. In contrast, clear differences were observed in the perception of octanoic acid and D15-octanoic acid. Furthermore, a trained sniffer dog was initially able to distinguish between these isotopologues of octanoic acid. In chromatographic measurements, the respective deuterated molecule showed weaker interaction with a non-polar liquid phase. Quantum chemical calculations give evidence that deuterated octanoic acid binds more strongly to a model receptor than non-deuterated. In contrast, the binding of the non-deuterated molecule is stronger with acetone. The isotope effect is calculated in the framework of statistical mechanics. It results from a complicated interplay between various thermostatistical contributions to the non-covalent free binding energies and it turns out to be very molecule-specific. The vibrational terms including non-classical zero-point energies play about the same role as rotational/translational contributions and are larger than bond length effects for the differential isotope perception of odor for which general rules cannot be derived.  相似文献   
114.
Recently, porous photocatalytically active block copolymer membranes were introduced, based on heterogenized molecular catalysts. Here, we report the integration of the photosensitizer, i. e., the light absorbing unit in an intermolecular photocatalytic system into block copolymer membranes in a covalent manner. We study the resulting structure and evaluate the orientational mobility of the photosensitizer as integral part of the photocatalytic system in such membranes. To this end we utilize transient absorption anisotropy, highlighting the temporal reorientation of the transition dipole moment probed in a femtosecond pump-probe experiment. Our findings indicate that the photosensitizer is rigidly bound to the polymer membrane and shows a large heterogeneity of absolute anisotropy values as a function of location probed within the matrix. This reflects the sample inhomogeneity arising from different protonation states of the photosensitizer and different intermolecular interactions of the photosensitizers within the block copolymer membrane scaffold.  相似文献   
115.
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s–3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1. On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+(H2O)n-1 and are transparent in the investigated energy range. For n=4–8, a mixture of Al+(H2O)n and HAlOH+(H2O)n-1 is present in the experiment.  相似文献   
116.
Flavonoids are a large group of plant secondary metabolites with a variety of biological properties and are therefore of interest to many scientists, as they can lead to industrially interesting intermediates. The anaerobic gut bacterium Eubacterium ramulus can catabolize flavonoids, but until now, the pathway has not been experimentally confirmed. In the present work, a chalcone isomerase (CHI) and an enoate reductase (ERED) could be identified through whole genome sequencing and gene motif search. These two enzymes were successfully cloned and expressed in Escherichia coli in their active form, even under aerobic conditions. The catabolic pathway of E. ramulus was confirmed by biotransformations of flavanones into dihydrochalcones. The engineered E. coli strain that expresses both enzymes was used for the conversion of several flavanones, underlining the applicability of this biocatalytic cascade reaction.  相似文献   
117.
Photoisomerizable glyco‐SAMs (self‐assembled monolayers), utilizing synthetic azobenzene glycoside derivatives were fabricated. The ultimate goal of this project is to assay the influence of the 3D arrangement of sugar ligands on cell adhesion, and eventually make cell adhesion photoswitchable. However, it is a prerequisite for any biological study on the spatial conditions of carbohydrate recognition, that photoisomerization of the surface molecules can be verified. Here, we employed IRRAS and XPS to spectroscopically characterize glyco‐SAMs. In particular and unprecedented to date, we prove reversible EZE isomerization of azobenzene glycoside‐terminated SAMs.  相似文献   
118.
A ligand containing the thiazolo[5,4‐d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N′‐(thiazolo[5,4‐d]thiazole‐2,5‐diylbis(4,1‐phenylene))bis(N‐(pyridine‐4‐yl)pyridin‐4‐amine ( 1 ), was designed as a donor–acceptor system for incorporation into electronically active metal–organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis‐near‐infrared spectroelectrochemistry (UV/Vis‐NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge‐transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi‐electron donor–acceptor ligand into a new two‐dimensional MOF, [Zn(NO3)2( 1 )] ( 2 ), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1 . Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.  相似文献   
119.
Three organotin–oxido clusters were formed by hydrolysis of ferrocenyl‐functionalized organotin chloride precursors in the presence of NaEPh (E=S, Se). [RFcSnCl3?HCl] ( C ; RFc = CMe2CH2C(Me)?N?N?C(Me)Fc) and [SnCl6]2? formed {(RFcSnCl2)3[Sn(OH)6]}[SnCl3] ( 3 a ) and {(RFcSnCl2)3[Sn(OH)6]}[PhSeO3] ( 3 b ), bearing an unprecedented [Sn4O6] unit, in a one‐pot synthesis or stepwise through [(RFcSnCl2)2Se] ( 1 ) plus [(RFcSnCl2)SePh] ( 2 ). A one‐pot reaction starting out from FcSnCl3 gave [(FcSn)9(OH)6O8Cl5] ( 4 ), which represents the largest Fc‐decorated Sn/O cluster reported to date.  相似文献   
120.
We report a lipid‐based strategy to visualize Golgi structure and dynamics at super‐resolution in live cells. The method is based on two novel reagents: a trans‐cyclooctene‐containing ceramide lipid (Cer‐TCO) and a highly reactive, tetrazine‐tagged near‐IR dye (SiR‐Tz). These reagents assemble via an extremely rapid “tetrazine‐click” reaction into Cer‐SiR, a highly photostable “vital dye” that enables prolonged live‐cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer‐SiR is nontoxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi‐resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号