首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2184篇
  免费   130篇
  国内免费   7篇
化学   1478篇
晶体学   2篇
力学   56篇
数学   425篇
物理学   360篇
  2023年   53篇
  2022年   42篇
  2021年   66篇
  2020年   108篇
  2019年   86篇
  2018年   28篇
  2017年   53篇
  2016年   103篇
  2015年   83篇
  2014年   84篇
  2013年   97篇
  2012年   133篇
  2011年   149篇
  2010年   77篇
  2009年   57篇
  2008年   116篇
  2007年   90篇
  2006年   92篇
  2005年   74篇
  2004年   56篇
  2003年   49篇
  2002年   54篇
  2001年   21篇
  2000年   17篇
  1999年   11篇
  1998年   19篇
  1997年   13篇
  1996年   11篇
  1995年   10篇
  1992年   10篇
  1989年   8篇
  1986年   9篇
  1985年   14篇
  1984年   8篇
  1983年   9篇
  1982年   10篇
  1981年   13篇
  1980年   10篇
  1979年   11篇
  1978年   8篇
  1977年   14篇
  1976年   11篇
  1975年   9篇
  1970年   8篇
  1968年   9篇
  1967年   8篇
  1934年   11篇
  1933年   8篇
  1930年   8篇
  1881年   9篇
排序方式: 共有2321条查询结果,搜索用时 31 毫秒
71.
An increasing number of organic light-emitting diodes (OLEDs) is nowadays based on the use of polymers as the emissive material. For this material class in particular, solution-processing of the OLEDs has gained traction in both research and industry. However, in order to access multilayer material systems, orthogonal solvents must be used to prevent dissolution of previously prepared layers. The use of crosslinkers can facilitate this production method by reducing the number of orthogonal solvents needed since insoluble networks are generated. In this work, a novel bisazide crosslinker is employed to insolubilize Super Yellow, a polyphenylene-vinylene emitter. This allows the use of an additional poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine electron blocking layer (EBL) from the same solvent. Devices including the blocking layer show improved efficacies compared to reference devices without the additional EBL, while also maintaining the emission spectrum. Using the upscalable technique of doctor blading, OLEDs were fabricated which showed a particularly noticeable effect of the blocking layer with a nearly twofold increase in luminance and a 56% increase in current efficacy.  相似文献   
72.
Effective receptors for the separation of Li+ from a mixture with other alkali metal ions under mild conditions remains an important challenge that could benefit from new approaches. In this study, it is demonstrated that the 4-phosphoryl pyrazolones, H L 2-H L 4, in the presence of the typical industrial organophosphorus co-ligands tributylphosphine oxide (TBPO), tributylphosphate (TBP) and trioctylphosphine oxide (TOPO), are able to selectively recognise and extract lithium ions from aqueous solution. Structural investigations in solution as well as in the solid state reveal the existence of a series of multinuclear Li+ complexes that include dimers (TBPO, TBP) as well as rarely observed trimers (TOPO) and represent the first clear evidence for the synergistic role of the co-ligands in the extraction process. Our findings are supported by detailed NMR, MS and extraction studies. Liquid-liquid extraction in the presence of TOPO revealed an unprecedented high Li+ extraction efficiency (78 %) for H L 4 compared to the use of the industrially employed acylpyrazolone H L 1 (15 %) and benzoyl-1,1,1-trifluoroacetone (52 %) extractants. In addition, a high selectivity for Li+ over Na+, K+ and Cs+ under mild conditions (pH ∼8.2) confirms that H L 2-H L 4 represent a new class of ligands that are very effective extractants for use in lithium separation.  相似文献   
73.
Complexes of atomic gold with a variety of ligands have been formed by passing helium nanodroplets (HNDs) through two pickup cells containing gold vapor and the vapor of another dopant, namely a rare gas, a diatomic molecule (H2, N2, O2, I2, P2), or various polyatomic molecules (H2O, CO2, SF6, C6H6, adamantane, imidazole, dicyclopentadiene, and fullerene). The doped HNDs were irradiated by electrons; ensuing cations were identified in a high-resolution mass spectrometer. Anions were detected for benzene, dicyclopentadiene, and fullerene. For most ligands L, the abundance distribution of AuLn+ versus size n displays a remarkable enhancement at n = 2. The propensity towards bis-ligand formation is attributed to the formation of covalent bonds in Au+L2 which adopt a dumbbell structure, L-Au+-L, as previously found for L = Xe and C60. Another interesting observation is the effect of gold on the degree of ionization-induced intramolecular fragmentation. For most systems gold enhances the fragmentation, i.e., intramolecular fragmentation in AuLn+ is larger than in pure Ln+. Hydrogen, on the other hand, behaves differently, as intramolecular fragmentation in Au(H2)n+ is weaker than in pure (H2)n+ by an order of magnitude.  相似文献   
74.
Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) identified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb. An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promising non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in future clinical studies, particularly for detection of lung injury.  相似文献   
75.
The long-time behavior of transport coefficients in a model for spatially heterogeneous media in two and three dimensions is investigated by molecular dynamics simulations. The behavior of the velocity autocorrelation function is rationalized in terms of a competition of the critical relaxation due to the underlying percolation transition and the hydrodynamic power-law anomalies. In two dimensions and in the absence of a diffusive mode, another power-law anomaly due to trapping is found with an exponent -3 instead of -2. Further, the logarithmic divergence of the Burnett coefficient is corroborated in the dilute limit; at finite density, however, it is dominated by stronger divergences.  相似文献   
76.
Recently, porous photocatalytically active block copolymer membranes were introduced, based on heterogenized molecular catalysts. Here, we report the integration of the photosensitizer, i. e., the light absorbing unit in an intermolecular photocatalytic system into block copolymer membranes in a covalent manner. We study the resulting structure and evaluate the orientational mobility of the photosensitizer as integral part of the photocatalytic system in such membranes. To this end we utilize transient absorption anisotropy, highlighting the temporal reorientation of the transition dipole moment probed in a femtosecond pump-probe experiment. Our findings indicate that the photosensitizer is rigidly bound to the polymer membrane and shows a large heterogeneity of absolute anisotropy values as a function of location probed within the matrix. This reflects the sample inhomogeneity arising from different protonation states of the photosensitizer and different intermolecular interactions of the photosensitizers within the block copolymer membrane scaffold.  相似文献   
77.
Photoisomerizable glyco‐SAMs (self‐assembled monolayers), utilizing synthetic azobenzene glycoside derivatives were fabricated. The ultimate goal of this project is to assay the influence of the 3D arrangement of sugar ligands on cell adhesion, and eventually make cell adhesion photoswitchable. However, it is a prerequisite for any biological study on the spatial conditions of carbohydrate recognition, that photoisomerization of the surface molecules can be verified. Here, we employed IRRAS and XPS to spectroscopically characterize glyco‐SAMs. In particular and unprecedented to date, we prove reversible EZE isomerization of azobenzene glycoside‐terminated SAMs.  相似文献   
78.
A ligand containing the thiazolo[5,4‐d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N′‐(thiazolo[5,4‐d]thiazole‐2,5‐diylbis(4,1‐phenylene))bis(N‐(pyridine‐4‐yl)pyridin‐4‐amine ( 1 ), was designed as a donor–acceptor system for incorporation into electronically active metal–organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis‐near‐infrared spectroelectrochemistry (UV/Vis‐NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge‐transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi‐electron donor–acceptor ligand into a new two‐dimensional MOF, [Zn(NO3)2( 1 )] ( 2 ), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1 . Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.  相似文献   
79.
We report a lipid‐based strategy to visualize Golgi structure and dynamics at super‐resolution in live cells. The method is based on two novel reagents: a trans‐cyclooctene‐containing ceramide lipid (Cer‐TCO) and a highly reactive, tetrazine‐tagged near‐IR dye (SiR‐Tz). These reagents assemble via an extremely rapid “tetrazine‐click” reaction into Cer‐SiR, a highly photostable “vital dye” that enables prolonged live‐cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer‐SiR is nontoxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi‐resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号