首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   3篇
化学   164篇
晶体学   1篇
力学   4篇
数学   4篇
物理学   6篇
  2022年   2篇
  2021年   1篇
  2020年   8篇
  2019年   12篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   12篇
  2011年   17篇
  2010年   10篇
  2009年   10篇
  2008年   19篇
  2007年   11篇
  2006年   13篇
  2005年   8篇
  2004年   6篇
  2003年   10篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
1.
Rhodium adlayers on Pt(100) substrates have been prepared by electrodeposition from dilute Rh(III) acidic solutions. The initially disordered layer is electrochemically annealed by applying a polarization program consisting of high-sweep-rate multicycle sequences between 0.05 and 0.78 V(RHE) in 0.1 M H(2)SO(4). In this way, a pseudomorphic Rh monolayer can be prepared on Pt(100) substrates. The degree of order of the electrochemically annealed layer has been evidenced not only through voltammetric experiments but also by means of scanning tunneling microscopy with atomic resolution for iodine-protected adlayers, which show a c(2 x 2) structure. The electrochemically induced ordering of the Rh adlayer appears to be a consequence of the repeated cycles of adsorption/desorption of H and, especially, oxygenated species. Voltammetry in sulfuric acid solutions permits examination of the energetics of H/anions and OH/O adsorption as a function of the Rh coverage. The first monolayer adsorbs both hydrogen and oxygenated species more strongly than the second one. This can be explained through an electronic effect caused by the underlying Pt(100) substrate.  相似文献   
2.
The adsorption of hydroxyl on Pt(1 1 1) single crystal electrodes from aqueous acidic solutions is carefully reinvestigated. The effect of small additions (10−8–10−5 M) of chloride and bisulphate anions on the OH adsorption region in perchloric acid solution has been studied. Two regions can be differentiated in the voltammetric profile, that behave differently after the addition of the foreign anion. The initial broad adsorption process is unaffected until the highest concentration is attained. However, the sharper peak at higher potentials is affected even at the lower anion concentration. Since mass transport limitations allow to discard the anion adsorption as the main process giving this peak, we propose that the two processes are due to the dissociative adsorption of two different kinds of water, that are affected by the anion in a different way. From this idea, a new model, based on the Frumkin adsorption isotherm, is proposed, which gives an excellent fit of the experimental results.  相似文献   
3.
Adiabatic calorimetry is a technique that has been introduced as an important approach to hazard evaluation of exothermically reactive systems. In this paper the free radical polymerization of methyl methacrylate (MMA) has been studied. One of the most important aspects of MMA polymerization is its exothermicity and autoaccelerating behaviour, these characteristics can generate the occurrence of a runaway reaction.In a runaway situation the reacting system is close to adiabatic behaviour because it is unable to eliminate the heat that is being generated. An even worse situation can be reproduced in the laboratory with the Phi-Tec pseudo-adiabatic calorimeter. Process design parameters that are usually calculated from thermodynamic data or using semiempirical rules, such as adiabatic temperature rise or maximum attainable pressure, can be directly determined.The existence of the ceiling temperature has been experimentally demonstrated.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
4.
A theoretical study including full geometry optimizations is carried out at the IMOMM(MP2:MM3) (IMOMM = integrated molecular orbital molecular mechanics) computational level on the [ReH(5)(PPh(i)()Pr(2))(2)(SiHPh(2))(2)] and [ReH(5)(PCyp(3))(2)(SiH(2)Ph)(2)] systems, the results being compared with available experimental diffraction data, as well as with MP2 results on the model system [ReH(5)(PH(3))(2)(SiH(3))(2)]. A simple scheme for the analysis of the relative weight of different contributions to the "steric" distortion is also proposed and applied to the same [ReH(5)(PPh(i)()Pr(2))(2)(SiHPh(2))(2)] and [ReH(5)(PCyp(3))(2)(SiH(2)Ph)(2)] species.  相似文献   
5.
Kinetics and mechanism of nitrate anion reduction on the Pt(100) electrode in perchloric and sulfuric acid solutions are studied. Analysis of the results of electrochemical measurements (combination of potentiostatic treatment and cyclic voltammetry) and the data of in situ IR spectroscopy allow suggesting the following scheme of the nitrate reduction process on Pt(100) differing from that in the literature. If the potential of 0.85 V is chosen as the starting potential for a clean flame-annealed electrode surface and negativegoing (cathodic) potential sweep is applied, then an NO adlayer with the coverage of about 0.5 monolayer is formed on Pt(100) in the nitrate solution already at 0.6 V. The further decrease in the potential results in NO reduction to hydroxylamine or/and ammonia, desorbing products vacate the adsorption sites for nitrate and hydrogen adatoms. At E < 0.1 V, adsorbed hydrogen is mostly present on the surface. During positive-going (anodic) potential sweep, the process of nitrate reduction starts after partial hydrogen desorption, the cathodic peak of nitrate reduction to hydroxylamine or ammonia is observed at 0.32 V on cyclic voltammograms. The process of nitrate anion reduction continues up to 0.7 V; at higher potentials, the surface redox process with participation of hydroxylamine or ammonia (the anodic peak at 0.78 V) and nitrate (the cathodic peak at 0.74 V is due to nitrate reduction to NO on the vacant adsorption sites) occurs.  相似文献   
6.
7.
8.
The electrochemical behavior of platinum single-crystal electrodes is revisited, with special emphasis on the determination of the potential of zero charge. We show that the measure of the charge displaced during CO adsorption allows the determination of the potential of zero total charge (PZTC). The estimation of the potential of zero free charge (PZFC) is discussed, with different degrees of approximation. The application of this methodology to the study of the PZTC of platinum stepped surfaces vicinal to Pt(111) reveals a marked decrease of the PZTC due to the introduction of surface steps. This effect is interpreted as the result of the existence of markedly smaller surface potentials localized on step sites. The importance of considering local aspects of the interface is emphasized with the use of N2O reduction as a sensitive probe to the local structure of the surface. It is proposed that the different local maxima observed in the absolute value of the reduction current correspond to the local values of PZTC. It is shown that there is, in general, good agreement between the overall PZTC, obtained from the CO displacement, and that calculated from the local values inferred from the N2O reduction. Further insight is obtained with the application of the laser-induced temperature jump method. This technique is useful to calculate the potential of maximum entropy of the double-layer formation. The resulting value of this potential for Pt(111) is discussed in the light of the PZFC value obtained from different approaches. For stepped surfaces vicinal to Pt(111), two local maxima in the entropy of the double layer are observed that are close to the local PZTC values estimated from the N2O reduction. This result suggests the existence of cooperative effects in the organization of the water dipoles close to the electrode surface. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 11, pp. 1275–1292. Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow. The text was submitted by the authors in English.  相似文献   
9.
The modeling of reactivity in an ionic liquid is examined with DFT and DFT/MM calculations on the S(N)2 intramolecular rearrangement of the Z-phenylhydrazone of 3-benzoyl-5-phenyl-1,2,4-oxadiazole into 4-benzoylamino-2,5-diphenyl-1,2,3-triazole induced by amines. Experimental research has shown that the reaction occurs in 1-butyl-3-methylimidazolium tetrafluoroborate, and in conventional organic solvents such as acetonitrile with comparable rates. The structure for the reactants, transition states and products for the rate-determining step are optimized, and the energy barrier is computed in three different environments: gas phase, water solvent, and ionic liquid. The results are encouraging in describing the energy barrier in the ionic liquid. A simple model is formulated to explain the effect of the solvent in this particular process, and a procedure to study theoretically the reactivity in an ionic liquid is proposed.  相似文献   
10.
The kinetics of underpotential deposition, three-dimensional nucleation, and growth of copper deposits at cathodic overpotentials on a Pt(111) electrode in solutions containing 0.5 M H2SO4, 10 mM CuSO4, and 0–200 mM acetonitrile (AcN) is studied by the cyclic voltammetry, potentiostatic current transients, and scanning probe microscopy methods. At low volume concentrations of acetonitrile ([AcN] ≤ 4 mM), adsorbed acetonitrile molecules accelerate the formation of a co-adsorption lattice of copper adatoms with anions due to local electrostatic effects at the charged interface. At higher concentrations, the underpotential deposition process is hampered, but the desorption of copper adatoms occurs at potentials more positive than those at low acetonitrile concentrations. This effect is attributed to a stabilizing action of acetonitrile molecules situated on the layer of copper adatoms and, in part, on platinum. At [AcN] = 0.4–40 mM, adsorbed acetonitrile molecules accelerate the growth of the bulk copper deposit, but the nucleation stage is hindered. The dependence of the copper amount on the deposition potential at [AcN] = 40 mM exhibits a maximum at 0.15–0.17 V. This effect was previously observed in weakly acid solutions (pH 1.7–3.0) containing no acetonitrile. The maximum rate of the deposit growth corresponds to an optimum number of crystallites (which is not too great) and an optimum distance between the growing centers in conditions of mixed kinetics “diffusion + electron transfer.” A substantial number of complexes Cu(I)-AcN forms at high acetonitrile concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号