首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   40篇
  国内免费   6篇
化学   507篇
晶体学   1篇
力学   18篇
数学   179篇
物理学   116篇
  2024年   1篇
  2023年   15篇
  2022年   36篇
  2021年   44篇
  2020年   36篇
  2019年   39篇
  2018年   34篇
  2017年   24篇
  2016年   45篇
  2015年   32篇
  2014年   30篇
  2013年   48篇
  2012年   67篇
  2011年   59篇
  2010年   22篇
  2009年   35篇
  2008年   33篇
  2007年   48篇
  2006年   28篇
  2005年   25篇
  2004年   26篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   10篇
  1999年   5篇
  1998年   8篇
  1997年   3篇
  1996年   7篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1952年   1篇
  1938年   1篇
排序方式: 共有821条查询结果,搜索用时 15 毫秒
81.
82.
Glycine and N,N-dimethylglycine stabilize La(III) hydroxide complexes of the type La2L2(OH)4 which possess phosphodiesterolytic activity close to that observed with most active tetravalent cations like Ce(IV).  相似文献   
83.
Benzoxazinoids are chemical defenses against herbivores and are produced by many members of the grass family. These compounds are stored as stable glucosides in plant cells and require the activity of glucosidases to release the corresponding toxic aglucones. In maize leaves, the most abundant benzoxazinoid is (2R)‐DIMBOA‐Glc, which is converted into the toxic DIMBOA upon herbivory. The ways in which three Spodoptera species metabolize this toxin were investigated. (2S)‐DIMBOA‐Glc, an epimer of the initial plant compound, was observed in the insect frass, and the associated glucosyltransferase activity was detected in the insect gut tissue. The epimeric glucoside produced by the insect was found to be no longer reactive towards plant glucosidases and thus cannot be converted into a toxin. Stereoselective reglucosylation thus represents a detoxification strategy in Spodoptera species that might help to explain their success as agricultural pests on benzoxazinoid‐containing crops.  相似文献   
84.
MicroRNAs (miRs) have emerged as important clinical biomarkers with both diagnostic and prognostic value for relevant diseases, such as cancer. MiRs pose unique challenges for detection and are currently detected by northern blotting, real‐time PCR, and microarray techniques. These expensive, complicated, and time‐consuming techniques are not feasible for on‐site miR determination. In this study, amperometric magnetobiosensors involving RNA‐binding viral protein p19 as a selective biorecognition element were developed for miR quantification. The p19‐based magnetosensors were able to detect 0.4 fmol of a synthetic target and endogenous miR‐21 (selected as a model for its role in a wide variety of cancers) in only 2 h in total RNA extracted from cancer cells and human breast‐tumor specimens without PCR amplification and sample preprocessing. These results open up formidable perspectives for the diagnosis and prognosis of human cancers and for drug‐discovery programs.  相似文献   
85.
Molecularly imprinted polymers for the determination of triazines were synthesized by precipitation using atrazine as template, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, and 2,2′‐azobisisobutrynitrile as initiator. The polymers were characterized by infrared spectroscopy and scanning electron microscopy and packed in a device for microextraction by packed sorbent aiming for the preconcentration/cleanup of herbicides, such as atrazine, simazine, simetryn, ametryn, and terbutryn in corn samples. Liquid chromatography coupled with time‐of‐flight mass spectrometry was used for the separation and determination of the herbicides. The selectivity coefficient of molecularly imprinted polymers was compared with that of nonimprinted polymer for the binary mixtures of atrazine/propanil and atrazine/picloram, and the values obtained were 15.6 and 2.96, respectively. The analytical curve ranged from 10 to 80 μg/kg (r = 0.989) and the limits of detection and quantification in the corn matrices were 3.3 and 10 μg/kg, respectively. Intra‐ and interday precisions were < 14.8% and accuracy was better than 90.9% for all herbicides. Polymer synthesis was successfully applied to the cleanup and preconcentration of triazines from fortified corn samples with 91.1–109.1% of recovery.  相似文献   
86.
UVA‐visible light has been proposed as a risk factor in the photo‐aging of the human eye lens, as well as in the etiology of cataract disease. There is accumulating evidence indicating that photosensitizing reactions mediated by endogenous chromophores, which are generated during human eye lens aging, can play an important role in the generation of these processes. These reactions can lead to protein impairment by inducing non‐enzymatic post‐translational modifications such as protein oxidation and crosslinking. Although numerous chromophores have been characterized as both bound to human eye lens proteins and as unbound low‐molecular‐mass compounds, their contribution to eye lens photoaging and cataract disease is not completely understood. In this article we discuss the photochemical contribution of UV‐filters derived from tryptophan catabolism and advanced glycation end products (AGEs) to human eye lens aging and cataract disease. We also discuss the recently described photosensitizing capacity of chromophores derived from newly discovered glucose and ascorbate degradation as a parallel pathway to their role in AGEs generation.  相似文献   
87.
A series of ethyl (substituted)phenyl‐4‐oxothiazolidin‐3‐yl)‐1‐ethyl‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylates ( 7a , 7b , 7c , 7d , 7e , 7f , 7g ) has been prepared from reactions between aminoquinolones 6 with arenealdehydes and mercaptoacetic acid. The critical intermediates, 6 a and 6b , were obtained from appropriate amines by a sequence of steps involving (i) reaction with diethylethoxymethylenemalonate, (ii) thermal cyclization in diphenyl ether, (iii) ethylation and (iv) Pd/C catalyzed reduction. New compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g were fully identified and characterized by NMR (1H and 13C) and specifically for 7d by X‐ray crystallography. Compounds 7b , 7c , 7d , 7e , 7f were found not to exhibit activity at 10 uM concentrations against gastric ascitis (AGP‐01), gastric adenocarcinoma kind intestinal (ACP‐02), colon (HCT‐116) and murine melanome (B16F10) cancer cells. However, none exhibited cytotoxicity against normal cells human fibroblast (MRC‐5), murine fibroblast (NIH3T3) and normal human melanocyte (Melan‐A).  相似文献   
88.
The asymmetric unit of the title compound, C6H9N2OS2+·HSO4·H2O, contains a heterocyclic cation, a hydrogen sulfate anion and a water molecule. There are strong hydrogen bonds between the hydrogen sulfate anions and water molecules, forming an infinite chain along the [010] direction, from which the cations are pendent. The steric, electronic and geometric features are compared with those of similar compounds. In this way, structural relationships are stated in terms of the influence of the sulfate group on the protonation of the heterocycle and on the tautomeric equilibrium in the solid state.  相似文献   
89.
Single‐walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near‐infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red‐shifted emission peak. Here, we report on quantum defects, introduced using light‐driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine‐containing proteins such as a GFP‐binding nanobody. In addition, an Fmoc‐protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.  相似文献   
90.
This article reports the structural elucidation by IR, UV and MS spectroscopic data along with 1H and 13C NMR chemical shift assignments of two benzophenones isolated from the fruit pericarp of Garcinia brasiliensis Mart. (Clusiaceae): garciniaphenone, (1R,5S,7S)-3-benzoyl-4-hydroxy-6,6-dimethyl-5,7-di(3-methyl-2-butenyl)bicyclo[3.3.1]non-3-ene-2,9-dione, a novel triprenylated benzophenone; and 7-epi-clusianone, a tetraprenylated benzophenone that has already been extracted from another species of the same family. Furthermore, the keto-enol tautomeric equilibrium at solution-state was described for these compounds by 1D and 2D NMR spectral methods and one attempt to rationalize the different ratios between the noted tautomers was based on stereochemical features.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号