首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22007篇
  免费   4061篇
  国内免费   2796篇
化学   15683篇
晶体学   344篇
力学   1526篇
综合类   162篇
数学   2343篇
物理学   8806篇
  2024年   71篇
  2023年   459篇
  2022年   857篇
  2021年   838篇
  2020年   937篇
  2019年   931篇
  2018年   824篇
  2017年   811篇
  2016年   1215篇
  2015年   1158篇
  2014年   1392篇
  2013年   1746篇
  2012年   2138篇
  2011年   2052篇
  2010年   1456篇
  2009年   1378篇
  2008年   1511篇
  2007年   1306篇
  2006年   1139篇
  2005年   1024篇
  2004年   736篇
  2003年   585篇
  2002年   552篇
  2001年   450篇
  2000年   371篇
  1999年   399篇
  1998年   301篇
  1997年   283篇
  1996年   315篇
  1995年   310篇
  1994年   208篇
  1993年   170篇
  1992年   163篇
  1991年   159篇
  1990年   135篇
  1989年   110篇
  1988年   87篇
  1987年   69篇
  1986年   53篇
  1985年   48篇
  1984年   32篇
  1983年   30篇
  1982年   16篇
  1981年   16篇
  1980年   12篇
  1978年   2篇
  1972年   1篇
  1957年   6篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Micro/nanoscale photonic barcodes based on multicolor luminescent segmented heterojunctions hold potential for applications in information security. However, such multicolor heterojunctions reported thus far are exclusively based on static luminescent signals, thus restricting their application in advanced confidential information protection. Reported here is a strategy to design responsive photonic barcodes with heterobimetallic (Tb3+/Eu3+) metal—organic framework multicolor heterostructures. The spatial colors could be precisely controlled by thermally manipulating the energy-transfer process between the two lanthanides, thus achieving responsive covert photonic barcodes. Also demonstrated is that spatially resolved responsive barcodes with multi-responsive features could be created in a single heterostructure. These findings offer unique opportunities to purposely design highly integrated responsive microstructures and smart devices toward advanced anti-counterfeiting applications.  相似文献   
972.
The widespread application of CRISPR-Cas9 has transformed genome engineering. Nevertheless, the precision to control the targeting activity of Cas9 requires further improvement. We report a toehold-switch-based approach to engineer the conformation of single guide RNA (sgRNA) for programmable activation of Cas9. This activation circuit is responsive to multiple inputs and can regulate the conformation of the sgRNA through toehold-switch-mediated strand displacement. We demonstrate the orthogonal suppression and activation of Cas9 with orthogonal DNA inputs. Combination of toehold switches leads to a variety of intracellular Cas9 activation programs with simultaneous and orthogonal responses, through which multiple genome loci are displayed in different colors in a controllable manner. This approach provides a new route for programing CRISPR in living cells for genome imaging and engineering.  相似文献   
973.
Electrochemical sensing performance is often compromised by electrode biofouling (e.g., proteins nonspecific binding) in complex biological fluids; however, the design and construction of a robust biointerface remains a great challenge. Herein, inspired by nature, we demonstrate a robust polydopamine-engineered biointerfacing, to tailing zwitterionic molecules (i.e., sulfobetaine methacrylate, SBMA) through Michael Addition. The SBMA-PDA biointerface can resist proteins nonspecific binding in complex biological fluids while enhancing interfacial electron transfer and electrochemical stability of the electrode. In addition, this sensing interface can be integrated with tissue-implantable electrode for in vivo analysis with improved sensing performance, preserving ca. 92.0% of the initial sensitivity after 2 h of implantation in brain tissue, showing low acute neuroinflammatory responses and good stability both in normal and in Parkinson′s disease (PD) rat brain tissue.  相似文献   
974.
The development of new principles and techniques with high neuronal compatibility for quantitatively monitoring the dynamics of neurochemicals is essential for deciphering brain chemistry and function but remains a great challenge. We herein report a neuron-compatible method for in vivo neurochemical sensing by powering a single carbon fiber through spontaneous bipolar electrochemistry as a new sensing platform. By using ascorbic acid as a model target to prove the concept, we found that the single-carbon-fiber-powered microsensor exhibited a good response, high stability and, more importantly, excellent neuronal compatibility. The microsensor was also highly compatible with electrophysiological recording, thus enabling the synchronous recording of both chemical and electrical signals. The sensing principle could be developed for in vivo monitoring of various neurochemicals in the future by rationally designing and tuning the electrochemical reactions at the two poles of the carbon fiber.  相似文献   
975.
We have rationally designed a new class of alkyne-tethered oximes and applied them in an unprecedented iron-catalyzed radical relay protocol for the rapid assembly of a wide array of structurally new and interesting fused pyridines. This method shows broad substrate scope and good functional-group tolerance and enabled the synthesis of several biologically active molecules. Furthermore, the fused pyridines could be diversely functionalized through various simple transformations, such as cyclization, C−H alkylation, and a click reaction. DFT calculation studies indicate that the reactions involve cascade 1,5-hydrogen atom transfer, 5-exo-dig radical addition, and cyclization processes. Moreover, preliminary biological investigations suggest that some of the fused pyridines exhibit good anti-inflammatory activity by restoring the imbalance of inflammatory homeostasis of macrophages in a lipopolysaccharide-induced model.  相似文献   
976.
In the past decades, messenger RNA (mRNA) biomarkers have been employed to identify the origin of body fluids in forensic medicine. We hypothesized that the polymorphism of mRNA could be applied to identify individuals in mixture samples composed of two body fluids. In this study, we selected five blood-specific mRNA biomarkers of venous blood (SPTB, CD3G, AMICA1, ANK1, and GYPA) that encompass 16 SNPs to identify the mixture contributor(s). Five specific gene markers for menstrual blood, semen, skin, saliva, and vaginal secretions were amplified and typed as body-fluid positive controls. We established the system of multiplex PCR and single base extension (SBE) reaction followed by CE. The amplicon size was between 90bp and 294bp. The peripheral blood specificity was examined against other human body fluids, including saliva, semen, skin, menstrual blood, and vaginal secretion. The 16 SNPs were peripheral blood specific and could be successfully typed in homemade mixtures which are composed of different body fluids with 1 ng peripheral blood mRNA added. This system showed a supersensitivity (1:100) in detecting the trace amount of peripheral blood mixed in other body fluids and a combined discrimination power (CDP) of 0.99929 in Chinese population. It was the first time to establish a method for identifying the blood donors and deconvoluting mixtures through detecting mRNA polymorphism with SNaPshot assay. This peripheral blood specific SNP typing system showed high sensitivity to the typing of blood source specific markers regardless of other body fluids in the mixture.  相似文献   
977.
A novel triphenylphosphine (TPP) treatment strategy was developed to prepare the near-infrared emission CsPbI3 nanocrystal (NC)-polymer composite thin-film luminescent solar concentrators (LSCs) featuring high absolute photoluminescence quantum yield (PLQY), low reabsorption, and high stability. The PL emission of the LSCs is centered at about 700 nm with 99.4±0.4 % PLQY and narrow full width at half maximum (FWHM) of 75 meV (30 nm). Compared with LSCs prepared with classic CsPbI3 NCs, the stability of the LSCs after TPP treatments has been greatly improved, even after long-term (30 days) immersion in water and strong mercury-lamp irradiation (50 mW cm−2). Owing to the presence of lone-pair electrons on the phosphorus atom, TPP is also used as a photoinitiator, with higher efficiency than other common photoinitiators. Large-area (ca. 75 cm2) infrared LSCs were achieved with a high optical conversion efficiency of 3.1 % at a geometric factor of 10.  相似文献   
978.
Quantum chemical study has been performed on finite-sized bi-metallic Rh3M alloys, M = Ag, Ir, Pd, Pt, Au, derived from magic cluster, Rh4. Bond length of C–O and N–O are noticed to be elongated in the presence of rhodium alloy clusters. CO2 and NO2 gases are found to be highly adsorbed on Rh3M clusters, which is confirmed by stretching frequency of C–O and N–O. DFT evaluated dipole moment and electronic charge redistribution suggests the sensing capability of CO2 and NO2 gases by Rh3M clusters which is further confirmed by the calculated HOMO–LUMO gap. Mixed rhodium alloy clusters supported on single-wall carbon nanotube (SWCNT) exhibits much higher ability to sense CO2 and NO2. On the other hand, SWCNT@Rh3M shows higher catalytic activity for the activation of CO2 and NO2 in comparison to bare Rh3M because of the higher electronic charge redistribution in the case of SWCNT@Rh3M. In case of SWCNT-supported gas adsorbed clusters, p electrons play a major role in bonding.  相似文献   
979.
A series of 1,3-indandione-terminated π-conjugated quinoids were synthesized by alkoxide-mediated rearrangement reaction of the respective alkene precursors, followed by air oxidation. This new protocol allows access to quinoidal compounds with variable termini and cores. The resulting quinoids all show LUMO levels below −4.0 eV and molar extinction coefficients above 105 L mol−1 cm−1. The optoelectronic properties of these compounds can be regulated by tuning the central cores as well as the aryl termini ascribed to the delocalized frontier molecular orbitals over the entire molecular skeleton involving aryl termini. n-Channel organic thin-film transistors with electron mobility of up to 0.38 cm2 V−1 s−1 were fabricated, showing the potential of this new class of quinoids as organic semiconductors.  相似文献   
980.
Photocatalytic overall water splitting has been recognized as a promising approach to convert solar energy into hydrogen. However, most of the photocatalysts suffer from low efficiencies mainly because of poor charge separation. Herein, taking a model semiconductor gallium nitride (GaN) as an example, we uncovered that photogenerated electrons and holes can be spatially separated to the nonpolar and polar surfaces of GaN nanorod arrays, which is presumably ascribed to the different surface band bending induced by the surface polarity. The photogenerated charge separation efficiency of GaN can be enhanced significantly from about 8 % to more than 80 % via co-exposing polar and nonpolar surfaces. Furthermore, spatially assembling reduction and oxidation cocatalysts on the nonpolar and polar surfaces remarkably boosts photocatalytic overall water splitting, with the quantum efficiency increased from 0.9 % for the film photocatalyst to 6.9 % for the nanorod arrays photocatalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号