首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
  国内免费   2篇
化学   51篇
物理学   6篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   9篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1998年   2篇
  1996年   2篇
  1988年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
21.
The di-mixed-valence complex [{(eta(5)-C5H5)Fe(eta(5)-C5H4)}4(eta(4)-C4)Co(eta(5)-C5H5)]2+, 1(2+), has been evaluated as a molecular four-dot cell for the quantum cellular automata paradigm for electronic devices. The cations 1(1+) and 1(2+) are prepared in good yield by selective chemical oxidation of 1(0) and are isolated as pure crystalline materials. The solid-state structures of 1(0) and 1(1+) and the midrange- and near-IR spectra of 1(0), 1(1+), 1(2+), and 1(3+) have been determined. Further, the variable-temperature EPR spectra of 1(1+) and 1(2+), magnetic susceptibility of 1(1+) and 1(2+), M?ssbauer spectra of 1(0), 1(1+), and 1(2+), NMR spectra of 1(0), and paramagnetic NMR spectra of 1(1+) and 1(2+) have been measured. The X-ray structure determination reveals four ferrocene "dots" arranged in a square by C-C bonds to the corners of a cyclobutadiene linker. The four ferrocene units project from alternating sides of the cyclobutadiene ring and are twisted to minimize steric interactions both with the Co(eta(5)-C5H5) fragment and with each other. In the solid state 1(2+) is a valence-trapped Robin and Day class II compound on the 10(-12) s infrared time scale, the fastest technique used herein, and unambiguous evidence for two Fe(II) and two Fe(III) sites is observed in both the infrared and M?ssbauer spectra. Both EPR and magnetic susceptibility measurements show no measurable spin-spin interaction in the solid state. In solution, the NMR spectra show that free rotation around the C-C bonds connecting the ferrocene units to the cyclobutadiene ring becomes increasingly hindered with decreasing temperature, leading to spectra at the lowest temperature that are consistent with the solid-state structure. Localization of the charges in the cations, which is observed in the paramagnetic NMR spectra as a function of temperature, correlates with the fluxional behavior. Hence, the alignment between the pi systems of the central linker and the ferrocene moieties most likely controls the rate of electron exchange between the dots.  相似文献   
22.
The reaction of (CpReH(2))(2)B(4)H(4) with monoborane leads to the sequential formation of (CpRe)(2)B(n)()H(n)() (n = 7-10, 1-4). These species adopt closed deltahedra with the same total connectivities as the closo-borane anions [B(n)()H(n)()](2)(-), n = 9-12, but with flattened geometries rather than spherical shapes. These rhenaborane clusters are characterized by high metal coordination numbers, Re-Re cross-cluster distances within the Re-Re single bond range, and formal cluster electron counts three skeletal electron pairs short of that required for a canonical closo-structure of the same nuclearity. An open cluster, (CpReH)(2)B(7)H(9) (5), is isolated that bears the same structural relationship to arachno-B(9)H(15) as 1-4 bear to the closo-borane anions. Chloroborane permits the isolation of (CpReH)(2)B(5)Cl(5) (6), an isoelectronic chloro-analogue of known open (CpWH(2))(2)B(5)H(5) and (CpRe)(2)B(6)H(4)Cl(2) (7), a triple-decker complex containing a planar, six-membered 1,2-B(6)H(4)Cl(2) ring. Both are putative five- and six-boron intermediates in the formation of 1. Electronic structure calculations (extended Hückel and density functional theory) yield geometries in agreement with the structure determinations, large HOMO-LUMO gaps in accord with the high stabilities, and (11)B chemical shifts accurately reflecting the observed shifts. Analyses of the bonding in 1-4 reveal that the CpRe.CpRe interaction generates fragment orbitals that are able to contribute the "missing" three skeletal electron pairs required for skeletal bonding. The necessity of a Re.Re interaction for strong cluster bonding requires a borane fragment shape change to accommodate it, thereby explaining the noncanonical geometries. Application of the debor principle of borane chemistry to the shapes of 1-4 readily rationalizes the observed geometries of 5 and 6. This evidence of the scope of transition metal fragment control of borane geometry suggests the existence of a large class of metallaboranes with structures not found in known borane or metal clusters.  相似文献   
23.
Products of the reaction of nido-1,2-(CpRuH)(2)B(3)H(7), 1, and phenylacetylene demonstrate the ways in which cluster metal and main group fragments can combine with an alkyne. Observed at 22 degrees C are (a) reduction to mu-alkylidene Ru-B bridges (isomers nido-1,2-(CpRu)(2)(1,5-mu-C{Ph}Me)B(3)H(7), 2, and nido-1,2-(CpRu)(2)(1,5-mu-C{CH(2)Ph}H)B(3)H(7), 3), (b) reduction to exo-cluster alkyl substituents on boron (nido-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-B(3)H(6), 4), (c) cluster insertion with extrusion of a BH(2) fragment into an exo-cluster bridge (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-4-or-5-Ph-4,5-C(2)B(2)H(5), 5), (d) combined insertion with BH(2) extrusion and reduction (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-3-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(2)H(4), 6), (e) insertion and loss of borane with and without reduction (nido-1,2-(CpRu)(2)-5-Ph-4,5-C(2)B(2)H(7), 7, and isomers nido-1,2-(CpRu)(2)-3-CH(2)CH(2)Ph-4-(and-5-)Ph-C(2)B(2)H(6), 8 and 9), and (f) insertion and borane loss plus reduction (nido-1,2-(CpRu)(2)-3-(trans-CH=CHPh)-5-Ph-4,5-C(2)B(2)H(6), 10). Along with 7, 8, and 10, the reaction at 90 degrees C generates products of insertion and nido- to closo-cluster closure (closo-4-Ph-1,2-(CpRuH)(2)-4,6-C(2)B(2)H(3), 11, closo-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-5-Ph-7-CH(2)CH(2)Ph-4,5-C(2)B(3)H(2), 12, closo-1,2-(CpRuH)(2)-5-Ph-4,5-C(2)B(3)H(4), 13, and isomers closo-1,2-(CpRuH)(2)-3-and-7-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(3)H(3), 14 and 15). The clusters with an exo-cluster bridging BH(2) groups are shown to be intermediates by demonstrating that the major products 5 and 6 rearrange to 13 and convert to 14, respectively. 14 then isomerizes to 15, thus connecting low- and high-temperature products. Finally, all available information shows that the high reactivity of 1 with alkynes can be associated with the "extra" two Ru-H hydrides on the framework of 1 which are required to meet the nido-cluster electron count.  相似文献   
24.
Li Z  Fehlner TP 《Inorganic chemistry》2003,42(18):5715-5721
Utilization of binary information encoded in the charge configuration of quantum-dot cells (the quantum-dot cellular automata, QCA, paradigm) requires surface-bound molecule-sized dots for room temperature operation. Molecular QCA cells are mixed-valence complexes, and the evaluation of a surface-bound unsymmetrical, heterobinuclear, two-dot, Fe-Ru molecular QCA cell is described. The tailed complex, trans-[Ru(dppm)(2)(C[triple bond]CFc)(N[triple bond]CCH(2)CH(2)-NH(2))][PF(6)] (dppm = methylbis(diphenylphosphane), Fc = (eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))), is covalently modified with the molecular adapter, HS(CH(2))(10)COOH, for binding to a Au surface. Preparation and characterization of the films by AFM, XPS, and electrochemical techniques are reported. Cyclic voltammetric techniques are used to assess film growth, coverage and uniformity, effects of thiol diluents on areal densities of the complex, and stabilities of the accessible redox states. Amperometric techniques are used to investigate the efficiency of both chemical and electrochemical oxidation in producing the mixed-valence dication on the surface.  相似文献   
25.
The amine functionality of the linker on the dinuclear complex [trans-Ru(dppm)(2)(Ctbd1;CFc)(NCCH(2)CH(2)NH(2))][PF(6)] reacts with Si-Cl bonds of a chlorinated, highly B doped Si (111) surface to yield Si-N surface-complex bonds. The surface bound complex is constrained to a near vertical orientation by the chain length of the linker as confirmed by variable angle XPS. Oxidation of the dinuclear complex with ferrocenium ion or electrochemically generates a stable, biased Fe(III)-Ru(II) mixed-valence complex on the surface. Characterization of the array of surface bound complexes with spectroscopic as well as electrochemical techniques confirms the presence of strongly bound, chemically robust, mixed-valence complexes. Capping the flat array of complexes with a minimally perturbing mercury electrode permits the equalization of the Fe and Ru energy wells by an applied electric field. The differential capacitance of oxidized and unoxidized bound complexes is compared as a function of voltage applied between the Hg gate and the Si. The results show that electron exchange between the Fe and Ru sites of the array of dinuclear mixed-valence complexes at energy equalization generates a fluctuating dipole that produces a maximum in the capacitance versus voltage curve for each complex-counterion combination present. Passage through the capacitance maximum corresponds to switching of the molecular quantum cellular automata (QCA) cell array by the electric field from the Fe(III)-Ru(II) configuration to the Fe(II)-Ru(III) configuration, thereby confirming that molecules possess an essential property necessary for their use as elements of a QCA device.  相似文献   
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号