首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   28篇
化学   444篇
晶体学   2篇
力学   10篇
数学   50篇
物理学   57篇
  2024年   1篇
  2023年   7篇
  2022年   48篇
  2021年   39篇
  2020年   18篇
  2019年   23篇
  2018年   6篇
  2017年   9篇
  2016年   23篇
  2015年   26篇
  2014年   20篇
  2013年   32篇
  2012年   35篇
  2011年   56篇
  2010年   35篇
  2009年   22篇
  2008年   23篇
  2007年   28篇
  2006年   22篇
  2005年   25篇
  2004年   20篇
  2003年   13篇
  2002年   19篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有563条查询结果,搜索用时 15 毫秒
101.
Due to its crucial role in pathophysiology, erythrocyte deformability represents a subject of intense experimental and modeling research. Here a computational approach to electro-deformation for erythrocyte mechanical characterization is presented. Strong points of the proposed strategy are: (1) an accurate computation of the mechanical actions induced on the cell by the electric field, (2) a microstructurally-based continuum model of the erythrocyte mechanical behavior, (3) an original rotation-free shell finite element, especially suited to the application in hand. As proved by the numerical results, the developed tool is effective and sound, and can foster the role of electro-deformation in single-cell mechanical phenotyping.  相似文献   
102.
103.
An in‐vacuum double‐phase‐plate diffractometer for performing polarization scans combined with resonant X‐ray diffraction experiments is presented. The use of two phase plates enables the correction of some of the aberration effects owing to the divergence of the beam and its energy spread. A higher rate of rotated polarization is thus obtained in comparison with a system with only a single retarder. Consequently, thinner phase plates can be used to obtain the required rotated polarization rate. These results are particularly interesting for applications at low energy (e.g. 4 keV) where the absorption owing to the phase plate(s) plays a key role in the feasibility of these experiments. Measurements by means of polarization scans at the uranium M4 edge on UO2 enable the contributions of the magnetic and quadrupole ordering in the material to be disentangled.  相似文献   
104.
Nanowires have received considerable attention owing to their broad potential applications. We report here on the application of nanowires for magnetic control of the electrochemical reactivity and demonstrate how one can modulate the electrocatalytic activity by orienting catalytic nanowires at different angles. Unlike early "on/off" magnetic switching studies based on functionalized magnetic spheres, the present magnetoswitchable protocol relies on modulating the electrochemical reactivity without removing the magnetic material from the surface. Such behavior is attributed to the reversible blocking of the redox processes and to changes in the tortuosity-dependent flux rate. The nanowire-based magnetoswitchable protocol may be extremely useful for adjusting the electrochemical reactivity, such as for tuning the power output of fuel cells (rather than switching the power on/off).  相似文献   
105.
Rational protein design has been successfully used to create mimics of natural proteins that retain native activity. In the present work, de novo protein engineering is explored to develop a mini-protein analogue of Gc-MAF, a glycoprotein involved in the immune system activation that has shown anticancer activity in mice. Gc-MAF is derived in vivo from vitamin D binding protein (VDBP) via enzymatic processing of its glycosaccharide to leave a single GalNAc residue located on an exposed loop. We used molecular modeling tools in conjunction with structural analysis to splice the glycosylated loop onto a stable three-helix bundle (alpha3W, PDB entry 1LQ7). The resulting 69-residue model peptide, MM1, has been successfully synthesized by solid-phase synthesis both in the aglycosylated and the glycosylated (GalNAc-MM1) form. Circular dichroism spectroscopy confirmed the expected alpha-helical secondary structure. The thermodynamic stability as evaluated from chemical and thermal denaturation is comparable with that of the scaffold protein, alpha3W, indicating that the insertion of the exogenous loop of Gc-MAF did not significantly perturb the overall structure. GalNAc-MM1 retains the macrophage stimulation activity of natural Gc-MAF; in vitro tests show an identical enhancement of Fc-receptor-mediated phagocytosis in primary macrophages. GalNAc-MM1 provides a framework for the development of mutants with increased activity that could be used in place of Gc-MAF as an immunomodulatory agent in therapy.  相似文献   
106.
The stereoselective addition of aryl- and alkylacetylene derivatives to imines was studied. The reaction is catalyzed by copper complexes of enantiomerically pure bisimines, readily prepared in very high yields from the commercially available binaphthyl diamine. A very simple experimental procedure allowed to obtain at room temperature optically active propargylamines in high yields and enantioselectivity. Interestingly, bisimine/copper(I) complexes were able to promote the direct, enantioselective, catalytic addition to imines of alkylacetylenes. The effects of catalyst loading and other reaction parameters on the stereochemical outcome of the transformation were investigated. The extremely convenient methodology, the mild reaction conditions, and the possibility of a modular approach for developing new and more efficient bisimine-based chiral ligands make the present methodology very attractive.  相似文献   
107.
A three-core polarization splitter based on a square-lattice photonic-crystal fiber is presented. The component separates the input field into two orthogonally polarized beams that are coupled to the horizontal and vertical output ports. The splitter has been designed through modal and beam propagation analysis by employing high-performance codes based on the finite-element method. Results obtained for a device length of 20 mm show extinction ratios as low as -23 dB with bandwidths as great as 90 nm.  相似文献   
108.
Upon photoexcitation by a short light pulse, molecules can reach regions of the configuration space characterized by strong nonadiabaticity, where the motion of the nuclei is strongly coupled to the motion of the electrons. The subtle interplay between the nuclear and electronic degrees of freedom in such situations is rather challenging to capture by state-of-the-art nonadiabatic dynamics approaches, limiting therefore their predictive power. The Exact Factorization of the molecular wavefunction, though, offers new perspectives in the solution of this longstanding issue. Here, we investigate the performance of a mixed quantum/classical (MQC) limit of this theory, named Coupled Trajectory-MQC, which was shown to reproduce the excited-state dynamics of small systems accurately. The method is applied to the study of the photoinduced ring opening of oxirane and the results are compared with two other nonadiabatic approaches based on different Ansätze for the molecular wavefunction, namely Ehrenfest dynamics and Ab Initio Multiple Spawning (AIMS). All simulations were performed using linear-response time-dependent density functional theory. We show that the CT-MQC method can capture the (de)coherence effects resulting from the dynamics through conical intersections, in good agreement with the results obtained with AIMS and in contrast with ensemble Ehrenfest dynamics.  相似文献   
109.
The aim of this work was to deeply investigate the structure and properties of electrochemically synthesized silver nanoparticles (AgNPs) through high-resolution techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta Potential measurements, and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Strong brightness, tendency to generate nanoclusters containing an odd number of atoms, and absence of the free silver ions in solution were observed. The research also highlighted that the chemical and physical properties of the AgNPs seemed to be related to their peculiar oxidative state as suggested by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD) analyses. Finally, the MTT assay tested the low cytotoxicity of the investigated AgNPs.  相似文献   
110.
Radiation-induced fibrosis (RIF) is a serious, yet incurable, complication of external beam radiation therapy for the treatment of cancer. Macrophages are key cellular actors in RIF because of their ability to produce reactive oxidants, such as reactive oxygen species (ROS) and inflammatory cytokines that, in turn, are the drivers of pro-fibrotic pathways. In a previous work, we showed that phagocytosis could be exploited to deliver the potent natural antioxidant astaxanthin specifically to macrophages. For this purpose, astaxanthin encapsulated into µm-sized protein particles could specifically target macrophages that can uptake the particles by phagocytosis. In these cells, astaxanthin microparticles significantly reduced intracellular ROS levels and the secretion of bioactive TGFβ and increased cell survival after radiation treatments. Here we show that pentoxifylline, a drug currently used for the treatment of muscle pain resulting from peripheral artery disease, amplifies the effects of astaxanthin microparticles on J774A.1 macrophages. Combination treatments with pentoxifylline and encapsulated astaxanthin might reduce the risk of RIF in cancer patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号