首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   28篇
化学   444篇
晶体学   2篇
力学   13篇
数学   50篇
物理学   58篇
  2023年   5篇
  2022年   31篇
  2021年   39篇
  2020年   18篇
  2019年   23篇
  2018年   6篇
  2017年   9篇
  2016年   24篇
  2015年   26篇
  2014年   20篇
  2013年   32篇
  2012年   36篇
  2011年   57篇
  2010年   35篇
  2009年   22篇
  2008年   24篇
  2007年   30篇
  2006年   25篇
  2005年   26篇
  2004年   20篇
  2003年   15篇
  2002年   20篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1979年   2篇
  1976年   1篇
  1956年   1篇
  1952年   2篇
  1951年   1篇
排序方式: 共有567条查询结果,搜索用时 78 毫秒
101.
Styrene–divinylbenzene resins were used for the synthesis of different polymer-bound β-diketones, obtained by anchoring the chelating group through either the central or the lateral position. The heterogenized diketone ligand was subsequently reacted with Ni(COD)2 analogously to the corresponding homogeneous catalysts active in α-olefin oligomerization. The heterogenized catalysts showed a good activity only when the central position of the chelate moiety was free. Heterogenization caused a significant change of selectivity: olefin oligomerization was accompanied by the formation of a large amount of polymeric products. This behavior is discussed in terms of steric effects caused by the bulky polymeric ligand. © 1998 John Wiley & Sons, Ltd.  相似文献   
102.
Human trophoblast cell-surface antigen-2 (Trop-2) is a membrane glycoprotein involved in cell proliferation and motility, frequently overexpressed in epithelial tumors. Thus, it represents an attractive target for anticancer therapies. Sacituzumab govitecan (SG) is a third-generation antibody-drug conjugate, consisting of an anti-Trop-2 monoclonal antibody (hRS7), a hydrolyzable linker, and a cytotoxin (SN38), which inhibits topoisomerase 1. Specific pharmacological features, such as the high antibody to payload ratio, the ultra-toxic nature of SN38, and the capacity to kill surrounding tumor cells (the bystander effect), make SG a very promising drug for cancer treatment. Indeed, unprecedented results have been observed with SG in patients with heavily pretreated advanced triple-negative breast cancer and urothelial carcinomas, and the drug has already received approval for these indications. These results are coupled with a manageable toxicity profile, with neutropenia and diarrhea as the most frequent adverse events, mainly of grades 1–2. While several trials are exploring SG activity in different tumor types and settings, potential biomarkers of response are under investigation. Among these, Trop-2 overexpression and the presence of BRCA1/2 mutations seem to be the most promising. We review the available literature concerning SG, with a focus on its toxicity spectrum and possible biomarkers of its response.  相似文献   
103.
Due to its crucial role in pathophysiology, erythrocyte deformability represents a subject of intense experimental and modeling research. Here a computational approach to electro-deformation for erythrocyte mechanical characterization is presented. Strong points of the proposed strategy are: (1) an accurate computation of the mechanical actions induced on the cell by the electric field, (2) a microstructurally-based continuum model of the erythrocyte mechanical behavior, (3) an original rotation-free shell finite element, especially suited to the application in hand. As proved by the numerical results, the developed tool is effective and sound, and can foster the role of electro-deformation in single-cell mechanical phenotyping.  相似文献   
104.
105.
An in‐vacuum double‐phase‐plate diffractometer for performing polarization scans combined with resonant X‐ray diffraction experiments is presented. The use of two phase plates enables the correction of some of the aberration effects owing to the divergence of the beam and its energy spread. A higher rate of rotated polarization is thus obtained in comparison with a system with only a single retarder. Consequently, thinner phase plates can be used to obtain the required rotated polarization rate. These results are particularly interesting for applications at low energy (e.g. 4 keV) where the absorption owing to the phase plate(s) plays a key role in the feasibility of these experiments. Measurements by means of polarization scans at the uranium M4 edge on UO2 enable the contributions of the magnetic and quadrupole ordering in the material to be disentangled.  相似文献   
106.
Nanowires have received considerable attention owing to their broad potential applications. We report here on the application of nanowires for magnetic control of the electrochemical reactivity and demonstrate how one can modulate the electrocatalytic activity by orienting catalytic nanowires at different angles. Unlike early "on/off" magnetic switching studies based on functionalized magnetic spheres, the present magnetoswitchable protocol relies on modulating the electrochemical reactivity without removing the magnetic material from the surface. Such behavior is attributed to the reversible blocking of the redox processes and to changes in the tortuosity-dependent flux rate. The nanowire-based magnetoswitchable protocol may be extremely useful for adjusting the electrochemical reactivity, such as for tuning the power output of fuel cells (rather than switching the power on/off).  相似文献   
107.
Rational protein design has been successfully used to create mimics of natural proteins that retain native activity. In the present work, de novo protein engineering is explored to develop a mini-protein analogue of Gc-MAF, a glycoprotein involved in the immune system activation that has shown anticancer activity in mice. Gc-MAF is derived in vivo from vitamin D binding protein (VDBP) via enzymatic processing of its glycosaccharide to leave a single GalNAc residue located on an exposed loop. We used molecular modeling tools in conjunction with structural analysis to splice the glycosylated loop onto a stable three-helix bundle (alpha3W, PDB entry 1LQ7). The resulting 69-residue model peptide, MM1, has been successfully synthesized by solid-phase synthesis both in the aglycosylated and the glycosylated (GalNAc-MM1) form. Circular dichroism spectroscopy confirmed the expected alpha-helical secondary structure. The thermodynamic stability as evaluated from chemical and thermal denaturation is comparable with that of the scaffold protein, alpha3W, indicating that the insertion of the exogenous loop of Gc-MAF did not significantly perturb the overall structure. GalNAc-MM1 retains the macrophage stimulation activity of natural Gc-MAF; in vitro tests show an identical enhancement of Fc-receptor-mediated phagocytosis in primary macrophages. GalNAc-MM1 provides a framework for the development of mutants with increased activity that could be used in place of Gc-MAF as an immunomodulatory agent in therapy.  相似文献   
108.
The stereoselective addition of aryl- and alkylacetylene derivatives to imines was studied. The reaction is catalyzed by copper complexes of enantiomerically pure bisimines, readily prepared in very high yields from the commercially available binaphthyl diamine. A very simple experimental procedure allowed to obtain at room temperature optically active propargylamines in high yields and enantioselectivity. Interestingly, bisimine/copper(I) complexes were able to promote the direct, enantioselective, catalytic addition to imines of alkylacetylenes. The effects of catalyst loading and other reaction parameters on the stereochemical outcome of the transformation were investigated. The extremely convenient methodology, the mild reaction conditions, and the possibility of a modular approach for developing new and more efficient bisimine-based chiral ligands make the present methodology very attractive.  相似文献   
109.
A three-core polarization splitter based on a square-lattice photonic-crystal fiber is presented. The component separates the input field into two orthogonally polarized beams that are coupled to the horizontal and vertical output ports. The splitter has been designed through modal and beam propagation analysis by employing high-performance codes based on the finite-element method. Results obtained for a device length of 20 mm show extinction ratios as low as -23 dB with bandwidths as great as 90 nm.  相似文献   
110.
Upon photoexcitation by a short light pulse, molecules can reach regions of the configuration space characterized by strong nonadiabaticity, where the motion of the nuclei is strongly coupled to the motion of the electrons. The subtle interplay between the nuclear and electronic degrees of freedom in such situations is rather challenging to capture by state-of-the-art nonadiabatic dynamics approaches, limiting therefore their predictive power. The Exact Factorization of the molecular wavefunction, though, offers new perspectives in the solution of this longstanding issue. Here, we investigate the performance of a mixed quantum/classical (MQC) limit of this theory, named Coupled Trajectory-MQC, which was shown to reproduce the excited-state dynamics of small systems accurately. The method is applied to the study of the photoinduced ring opening of oxirane and the results are compared with two other nonadiabatic approaches based on different Ansätze for the molecular wavefunction, namely Ehrenfest dynamics and Ab Initio Multiple Spawning (AIMS). All simulations were performed using linear-response time-dependent density functional theory. We show that the CT-MQC method can capture the (de)coherence effects resulting from the dynamics through conical intersections, in good agreement with the results obtained with AIMS and in contrast with ensemble Ehrenfest dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号