首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   34篇
  国内免费   4篇
化学   595篇
晶体学   9篇
力学   19篇
数学   46篇
物理学   256篇
  2023年   9篇
  2022年   47篇
  2021年   47篇
  2020年   24篇
  2019年   29篇
  2018年   19篇
  2017年   17篇
  2016年   36篇
  2015年   18篇
  2014年   37篇
  2013年   63篇
  2012年   58篇
  2011年   53篇
  2010年   27篇
  2009年   28篇
  2008年   46篇
  2007年   41篇
  2006年   30篇
  2005年   24篇
  2004年   27篇
  2003年   18篇
  2002年   21篇
  2001年   16篇
  2000年   13篇
  1999年   5篇
  1998年   9篇
  1997年   5篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   11篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   11篇
  1987年   9篇
  1986年   5篇
  1985年   10篇
  1984年   6篇
  1982年   5篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1975年   3篇
  1973年   3篇
  1971年   4篇
  1970年   2篇
  1968年   4篇
  1967年   2篇
排序方式: 共有925条查询结果,搜索用时 15 毫秒
901.
Dalapati S  Jana S  Saha R  Alam MA  Guchhait N 《Organic letters》2012,14(13):3244-3247
A series of compounds with an amine based structural motif (ASM) have been synthesized for efficient atmospheric CO(2) fixation. The H-bonded ASM-bicarbonate complexes were formed with an in situ generated HCO(3)(-) ion. The complexes have been characterized by IR, (13)C NMR, and X-ray single-crystal structural analysis. ASM-bicarbonate salts have been converted to pure ASMs in quantitative yield under mild conditions for recycling processes.  相似文献   
902.
The synthesis and structures of the N‐[(2‐hydroxy‐3‐methyl‐5‐dodecylphenyl)methyl]‐N‐(carboxymethyl)glycine disodium salt (H L ) ligand and its neutral mononuclear complex [FeIII( L )(EtOH)2] ( 1 ) are reported. Structural and electronic properties of 1 were investigated by using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy (CITS) techniques. These studies reveal that molecules of 1 form well‐ordered self‐assemblies when deposited on a highly oriented pyrolytic graphite (HOPG) surface. At low concentrations, single or double chains (i.e., nanowires) of the complex were observed, whereas at high concentration the complex forms crystals and densely packed one‐dimensional structures. In STM topographies, the dimensions of assemblies of 1 found on the surface are consistent with dimensions obtained from X‐ray crystallography, which indicates the strong similarities between the crystal form and surface assembled states. Double chains are attributed to hydrogen‐bonding interactions and the molecules align preferentially along graphite defects. In the CITS image of complex 1 a strong tunneling current contrast at the positions of the metal ions was observed. These data were interpreted and reveal that the bonds coordinating the metal ions are weaker than those of the surrounding ligands; therefore the energy levels next to the Fermi energy of the molecule should be dominated by metal‐ion orbitals.  相似文献   
903.
In recent years, there is an increasing interest in the fabrication of inorganic–organic materials considering the remarkable change and improvement in properties. In this investigation, nanosized nickel oxide (NiO) particles were first prepared by calcination of nickel hydroxide precursor obtained by a simple liquid‐phase process. Mixed phases of NiO and nickel hydroxide were present as the calcination temperature was lower than 250°C. Non‐stoichiometric NiO was formed between 250°C and 350°C, and a pure NiO was obtained as the temperature reached 500°C. The surface characteristics of NiO particles were evaluated by measuring the adsorption behavior of anionic and cationic surfactants and some biomolecules. NiO/poly(methyl methacrylate) composite particles were then prepared using variable NiO/methyl methacrylate (MMA) ratio by seeded emulsion polymerization. The efficiency of NiO incorporation in the composite increased as the MMA content was increased in the recipe. The composite particles were colloidally stable, and the obtained particles were characterized by Fourier transform infrared, scanning electron microscopy, X‐ray diffraction, and X‐ray photoelectron spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
904.
Chemiluminescence (CL) emission from luminol–tetrachloroaurate ([AuCl4]?) system studied in presence of monosaccharide sugars such as glucose and fructose was investigated on a microfluidic chip fabricated by the soft lithography technique. CL emission from the luminol–[AuCl4]? system at 430?nm was intensified remarkably by the catalytic activity of glucose and fructose at room temperature. Under optimized conditions, the CL emission intensity of the system was found to be linearly related to the concentration of the sugars. Based on this observation, nonenzymatic determination of total sugar (glucose, fructose, or hydrolyzable sucrose) was performed in a rapid and sensitive analytical method. The results revealed that the linearity ranged from 9 to 1,750?μM for glucose and 80 to 1,750?μM for fructose, with a limit of detection of 0.65 and 0.69?μM, respectively. The relative standard deviations determined at 250?μM based on six repetitive injections were 1.13 and 1.15?% for glucose and fructose, respectively. The developed method was successfully applied for determination of the total sugar concentration in food and beverages.
Figure
Schematic diagram and plausible chemical reaction scheme of microfluidic chip based enzymless determination of total sugar concentration. (a) CL emission for reaction between luminol and [AuCl4]- in absence of sugar; (b) Enhanced CL emission when reaction mixture of reducing sugar and [AuCl4]- merge with the luminol stream in the chip. SP-1, SP-2, and SP-3 represent the syringe pumps that deliver H2O/Sugar sample, [AuCl4]- and luminol solution, respectively, to the chip. M first mixing zone; D mixing and detection zone, W waste out  相似文献   
905.
Two-dimensional (1)H-(13)C INEPT MAS NMR experiments utilizing a (1)H-(1)H magnetization exchange mixing period are presented for characterization of lipid systems. The introduction of the exchange period allows for structural information to be obtained via (1)H-(1)H dipolar couplings but with (13)C chemical shift resolution. It is shown that utilizing a RFDR recoupling sequence with short mixing times in place of the more standard NOE cross-relaxation for magnetization exchange during the mixing period allowed for the identification and separation of close (1)H-(1)H dipolar contacts versus longer-range inter-molecular (1)H-(1)H dipolar cross-relaxation. These 2D INEPT experiments were used to address both intra- and inter-molecular contacts in lipid and lipid/cholesterol mixtures.  相似文献   
906.
907.
The silicide Sc2RuSi2 was synthesized from the elements by arc-melting. The structure was refined on the basis of single crystal X-ray diffractometer data: Zr2CoSi2 type, C2/m, a = 1004.7 (2), b = 406.8 (1), c = 946.6 (2) pm, β = 117.95 (2), wR2 = 0.0230, 743 F2 values, and 32 variables. The structure consists of a rigid three-dimensional [RuSi2] network in which the two crystallographically independent scandium atoms fill larger cages of coordination numbers 16 and 15, respectively. The [RuSi2] network shows short Ru–Si distances (234–247 pm) and two different Si2 pairs: Si1–Si1 at 247 and Si2–Si2 at 243 pm. Each silicon atom has trigonal prismatic Sc6 (for Si2) or Sc4Ru2 (for Si1) coordination. These building units are condensed via common edges and faces. The various Sc–Sc distances between the prisms range from 327 to 361 pm. From electronic structure investigation within DFT, chemical bonding shows a major role of Ru–Si bonding and the presence of strong electron localization around Si–Si pairs pointing to a polyanionic silicide network [RuSi2]δ?. The 45Sc MAS-NMR spectra recorded at 11.7 and 9.4 T clearly resolve the two distinct scandium sites. The large electric field gradients present at both scandium sites result in typical line shapes arising from second-order quadrupole perturbation effects.  相似文献   
908.
In situ Raman scattering studies allow following real‐time evolutions of volume or surface structures under extreme conditions. In nuclear materials sciences, ion irradiation‐induced atomic organization modification and water radiolysis are of a major interest. In order to better understand these phenomena, we have developed an in situ versatile portable Raman spectroscopy system coupled with a cyclotron accelerator, allowing monitoring of a solid/liquid interface under irradiation and thus giving access to effects of radiolysis. The different parts of the system and their improvements are described in details. The system efficiency is highlighted by a comparative study of the time dependence of UO2 surface modification induced, on one hand by contact with water under irradiation by 5 MeV He2+ particles, and on the other hand by pure chemical alteration, through contact with a hydrogen peroxide solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
909.
This Letter presents a search for pair production of heavy down-type quarks decaying via b^{'}→Wt in the lepton+jets channel, as b^{'}b[over ˉ]^{'}→W^{-}tW^{+}t[over ˉ]→bb[over ˉ]W^{+}W^{-}W^{+}W^{-}→l^{±}νbb[over ˉ]qq[over ˉ]qq[over ˉ]qq[over ˉ]. In addition to requiring exactly one lepton, large missing transverse momentum, and at least six jets, the invariant mass of nearby jet pairs is used to identify high transverse momentum W bosons. In data corresponding to an integrated luminosity of 1.04 fb^{-1} from pp collisions at sqrt[s]=7 TeV recorded with the ATLAS detector, a heavy down-type quark with mass less than 480?GeV can be excluded at the 95% confidence level.  相似文献   
910.
Hybrid plasmonic waveguides consisting of a metal plane separated from a high-index medium by a low-index spacer have recently attracted much interest. Here we show that, by suitably choosing the dimensions and material properties of the hybrid waveguide, a very compact and broadband TE-pass polarizer can be implemented. Finite-difference time-domain simulation indicates that the proposed device can provide large extinction ratio with low insertion loss for the TE mode.  相似文献   
[首页] « 上一页 [84] [85] [86] [87] [88] [89] [90] 91 [92] [93] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号