首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   12篇
  国内免费   1篇
化学   209篇
晶体学   2篇
力学   19篇
数学   21篇
物理学   95篇
  2023年   2篇
  2022年   14篇
  2021年   17篇
  2020年   11篇
  2019年   13篇
  2018年   14篇
  2017年   7篇
  2016年   16篇
  2015年   6篇
  2014年   14篇
  2013年   23篇
  2012年   24篇
  2011年   29篇
  2010年   13篇
  2009年   15篇
  2008年   7篇
  2007年   15篇
  2006年   11篇
  2005年   12篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1962年   1篇
  1961年   1篇
排序方式: 共有346条查询结果,搜索用时 109 毫秒
131.
Highly oriented multilinked ZnO nano and micro rods were deposited using aqueous solution growth technique on ITO and glass substrates. Their study provides a basic understanding of effect of the base material on the growth of nanorods. An equimolar aqueous solution of Zinc nitrate and hexamine (HMT) was used for the preparation of ZnO nanorods arrays. ZnO was deposited on ITO and glass substrates after establishing the optimal pH and concentration, which yield the best substrate coverage for precursor solution. To achieve uniform growth and high density of ZnO nanorods, the prepared solution was heated at certain constant temperature. The experimental results have been obtained by using Scanning Electron Microscope (SEM), X-ray diffractometer (XRD) and Fluorescence Spectroscope which shows highly oriented nanorods perpendicular to the surface of substrates and a comparative study of ITO and glass grown nanorod arrays shows that the structural chemistry of the substrate clearly affects the growth nanostructures. The high variation in optical properties can be attributed by the heating temperatures and limited presence of reactants available for the controlled growth on substrates. It is also observed confined and decreased particle size with enhanced nucleation on ITO substrate as compared to glass. Due to the physical limitations in the growth, this kinetically controlled nucleation would be responsible for producing the highly uniform, dense and perpendicularly oriented nanorods.  相似文献   
132.
Fozia Z. Haque  Vazid Ali  M. Husain 《Optik》2012,123(11):1010-1014
The work was carried out to achieve two different but interdependent objectives; one to synthesis a transparent silica matrix with enough strength and thermal stability, by sol–gel technique, to host an organic dye molecule without quenching its fluorescence and two to find the probability if the said material is suitable for the construction of solid state dye lasers. Crack-free transparent silica gel rods with good mechanical strength, thermal stability and dimensions were successfully synthesized by sol–gel techniques. The rods were doped with Kiton Red-620 dye in different concentration separately. Effect of various synthesis parameters like time, temperature and aging condition was extensively studied to obtain crack-free silica rods doped with dye. Optical properties of prepared rods were studied by FTIR, UV/VIS–NIR and fluorescence spectroscopy. It is observed that Kiton Red-620 dye doped silica gel rods show good fluorescence with sharp peaks in the visible range. Their UV–VIS spectrum indicates the absorption in visible range. Thermal stability of rods were studied by DSC/TGA methods. Eventually it is found that these dye doped silica gel materials explore the possibility for new solid-state dye laser materials.  相似文献   
133.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   
134.
Selective glucose measurement in serum and blood and rapid glucose measurement using nicotinamide adenine dinucleotide (NAD)‐dependent glucose dehydrogenase (NAD‐GDH) are still very challenging. Here, we report a selective and rapid glucose sensor, based on electrochemical‐enzymatic‐enzymatic (ENN) redox cycling involving bis(2,2‐bipyridyl)dichloroosmium(II) [Os(bpy)2Cl2], diaphorase (DI), NAD+, NAD‐GDH, and glucose. DI and Os(bpy)2Cl2 are used to obtain fast mediated oxidation of NADH that is generated as a result of glucose oxidation by NAD‐GDH. DI and NAD‐GDH are co‐immobilized via affinity binding on an avidin‐modified indium tin oxide electrode to obtain fast and stable ENN redox cycling. Two enzymes (DI and NAD‐GDH) and two electron mediators [Os(bpy)2Cl2 and NAD+] are insensitive to oxygen. The applied potential (0.0 V vs Ag/AgCl) is low enough to minimize interfering electrochemical reactions, and the redox reactions of Os(bpy)2Cl2 with interfering species are slow. NAD‐GDH is much less reactive to problematic monosaccharides such as xylose, fructose, galactose, and mannose than glucose. Artificial serum containing 5 % (w/v) human serum albumin shows a similar electrochemical background level in serum. All results enable us to obtain selective and reproducible glucose detection. The fast ENN redox cycling allows sensitive glucose detection with a wide range of concentrations in artificial serum with a short measuring time (5 s) without an incubation period.  相似文献   
135.
Three bisbenzimidazolium salts, 3,3-(alkane-1,n-diyl)bisbenzylbenzimidazolium dibromide/dihexafluorophosphate (1a/b–3a/b) (where alkane?=?ethane, propane or butane and n?=?2, 3, or 4), were synthesized. The bromide salts were subsequently used as precursors to prepare their respective Ag(I)-NHC complexes via in situ deprotonation method. The successful formation of all bisbenzimidazolium salts and complexes were proved by elemental analysis, 1H-NMR, 13C-NMR and FT-IR analyses. From single-crystal X-ray diffraction analyses, 4 has been established as a binuclear complex with the molecule arranged as in trans-conformation. Salts 1b3b and Ag(I)-NHC complexes 46 were then screened for their antibacterial potential against E. coli (ATCC 25922) and S. aureus (ATCC 12600). All the bisbenzimidazolium salts do not show any activity against both bacteria while 4 exhibits the highest activity against both bacteria in all methods followed by 5 and 6.  相似文献   
136.
Herein, the design, synthesis, and characterization of an unprecedented copolymer consisting of alternating linear and dendritic segments is described. First, a 4th‐generation Hawker‐type dendron with two azide groups was synthesized, followed by a step‐growth azide‐alkyne “click” reaction between the 4th‐generation diazido dendron and poly(ethylene glycol) diacetylene to create the target polymers. Unequal reactivity of the functional groups was observed in the step‐growth polymerization. The resulting copolymers, with alternating hydrophilic linear and hydrophobic dendritic segments, can spontaneously associate into a unique type of microphase‐segregated nanorods in water.  相似文献   
137.
The optical properties of a novel semi-transparent organic solar cell were investigated both experimentally and by transfer matrix modelling to maximize photocurrent generation. The effect of multilayer anode thickness and illumination direction was studied. Bottom illumination was shown to provide enhanced exciton generation and increased photocurrent. Changing the multilayer anode thickness also influenced the device reflectance and photocurrent generation.  相似文献   
138.
The synthesis of a series of Mg–Cu–Zn ferrites with the substitution of Cu for Mg has been obtained by solid-state reaction method. Microstuctural and structural analyses were carried out using a scanning electron microscope and X-ray diffraction (XRD), respectively. The lattice parameter is found to increase with increasing copper content. A remarkable densification is observed with the addition of Cu ions in the ferrites. Microstructural analyses indicate that CuO influences the microstructure of the ferrites by the formation of liquid phase during sintering. The grain size significantly increases with increasing copper content. Exaggerated grain growth is observed for the samples of x=0.25–0.35. The initial magnetic permeability (μ′) increases sharply with increasing concentration of Cu ions. This increase in μ′ is explained with the grain growth mechanism and enhanced densification of the ferrites. The resonance frequency of all the samples shifts toward the lower frequency as the permeability increases with Cu content. Sintering temperature Ts also affects the densification, grain growth and initial magnetic permeability of the samples.  相似文献   
139.
S. A. Khan  Q. Haque 《中国物理快报》2008,25(12):4329-4332
Low frequency (in comparison to ion plasma frequency) ion-acoustic shocks and solitons in superdense electronpositron-ion quantum plasmas are studied. The quantum hydrodynamic model is used incorporating quantum Bohm forces and Fermi-Dirac statistical corrections to derive the deformed Korteweg de Vries-Burgers (dKdVB) equation in weakly nonlinear limit. The travelling wave solution of dKdVB equation is presented and results are discussed in different limits. It is found that shock height increases with increase of quantum pressure, positron concentration and dissipation. Further, it is seen that the width of soliton decreases with increase of quantum pressure  相似文献   
140.
Trialkyl and triaryl phosphines are important classes of ligands in the field of catalysis and materials research. The wide usability of these low-valent phosphines has led to the design and development of new synthesis routes for a variety of phosphines. In the present work, we report the synthesis and characterization of some mixed arylalkyl tertiary phosphines via the Grignard approach. A new asymmetric phosphine is characterized extensively by multi-spectroscopic techniques. IR and UV–Vis spectra of some selected compounds are also compared and discussed. Density functional theory (DFT)-calculated results support the formation of the new compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号