首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   6篇
  国内免费   2篇
化学   104篇
晶体学   1篇
力学   8篇
数学   19篇
物理学   32篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   10篇
  2014年   9篇
  2013年   18篇
  2012年   12篇
  2011年   6篇
  2010年   15篇
  2009年   8篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1979年   2篇
  1975年   1篇
排序方式: 共有164条查询结果,搜索用时 6 毫秒
161.
Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid–liquid microextraction (HLLE) were compared for the extraction and preconcentration of di‐(2‐ethylhexyl) phthalate (DEHP) and di‐(2‐ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1‐undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME–GC‐FID and HLLE–GC‐FID, were ranged from 0.03 to 0.01 μg/L and 0.02 to 0.01 μg/L, respectively. HLLE provided higher preconcentration factors (472.5‐ and 551.2‐fold) within the shorter extraction time as well as better RSDs (4.5–6.9%). While, in SFDME, high preconcentration factors in the range of 162–198 and good RSDs in the range of 5.2–9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.  相似文献   
162.
The Lagrange formalism was implemented to derive the equations of motion for the physics-based united-residue (UNRES) force field developed in our laboratory. The C(alpha)...C(alpha) and C(alpha)...SC (SC denoting a side-chain center) virtual-bond vectors were chosen as variables. The velocity Verlet algorithm was adopted to integrate the equations of motion. Tests on the unblocked Ala(10) polypeptide showed that the algorithm is stable in short periods of time up to the time step of 1.467 fs; however, even with the shorter time step of 0.489 fs, some drift of the total energy occurs because of momentary jumps of the acceleration. These jumps are caused by numerical instability of the forces arising from the U(rot) component of UNRES that describes the energetics of side-chain-rotameric states. Test runs on the Gly(10) sequence (in which U(rot) is not present) and on the Ala(10) sequence with U(rot) replaced by a simple numerically stable harmonic potential confirmed this observation; oscillations of the total energy were observed only up to the time step of 7.335 fs, and some drift in the total energy or instability of the trajectories started to appear in long-time (2 ns and longer) trajectories only for the time step of 9.78 fs. These results demonstrate that the present U(rot) components (which are statistical potentials derived from the Protein Data Bank) must be replaced with more numerically stable functions; this work is under way in our laboratory. For the purpose of our present work, a nonsymplectic variable-time-step algorithm was introduced to reduce the energy drift for regular polypeptide sequences. The algorithm scales down the time step at a given point of a trajectory if the maximum change of acceleration exceeds a selected cutoff value. With this algorithm, the total energy is reasonably conserved up to a time step of 2.445 fs, as tested on the unblocked Ala(10) polypeptide. We also tried a symplectic multiple-time-step reversible RESPA algorithm and achieved satisfactory energy conservation for time steps up to 7.335 fs. However, at present, it appears that the reversible RESPA algorithm is several times more expensive than the variable-time-step algorithm because of the necessity to perform additional matrix multiplications. We also observed that, because Ala(10) folds and unfolds within picoseconds in the microcanonical mode, this suggests that the effective (event-based) time unit in UNRES dynamics is much larger than that of all-atom dynamics because of averaging over the fast-moving degrees of freedom in deriving the UNRES potential.  相似文献   
163.
The manganese(II)‐palladium(II)‐sulfide complex [MnCl23‐S)2Pd2(dppp)2] ( 2 ) was prepared from the reaction of [PdCl2(dppp)] with [Li(N,N'‐tmeda)]2[Mn(SSiMe3)4] ( 2 ) in a 2:1 ratio under mild conditions. The new trimethylsilylthiolate complex [Pd(dppp)(SSiMe3)2] ( 3 ) was synthesized from the reaction of [Pd(dppp)(OAc)2] with two equivalents of Li[SSiMe3]; this was then used in a reaction with [Mn(CH3CN)2(OTf)2] to form the manganese(II)‐palladium(II)‐sulfide cluster [Mn(OTf)(thf)23‐S)2Pd2(dppp)2]OTf ( 4 ).  相似文献   
164.
The alkaline milieu of chronic wounds severely impairs the therapeutic effect of antibiotics, such as rifampicin; as such, the development of new drugs, or the smart delivery of existing drugs, is required. Herein, two innovative polyelectrolyte nanoparticles (PENs), composed of an amphiphilic chitosan core and a polycationic shell, were synthesized at alkaline pH, and in vitro performances were assessed by 1H NMR, elemental analysis, FT-IR, XRD, DSC, DLS, SEM, TEM, UV/Vis spectrophotometry, and HPLC. According to the results, the nanostructures exhibited different morphologies but similar physicochemical properties and release profiles. It was also hypothesized that the simultaneous use of the nanosystem and an antioxidant could be therapeutically beneficial. Therefore, the simultaneous effects of ascorbic acid and PENs were evaluated on the release profile and degradation of rifampicin, in which the results confirmed their synergistic protective effect at pH 8.5, as opposed to pH 7.4. Overall, this study highlighted the benefits of nanoparticulate development in the presence of antioxidants, at alkaline pH, as an efficient approach for decreasing rifampicin degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号