首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   41篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
21.
Glyceline, reline, or ethaline deep eutectic solvents and carbon black nanoparticles within a crosslinked chitosan film are investigated as glassy carbon electrode modifiers for the first time. The selected 5 mg mL−1 glyceline modified GCE was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Simultaneous determination of acetaminophen and diclofenac by differential pulse adsorptive stripping voltammetry (DPAdSV) presented limits of detection of 2.6×10−8 and 5.2×10−8 mol L−1 for acetaminophen and diclofenac, respectively, in pharmaceutical and biological samples. The obtained results were compared with those obtained by HPLC at a confidence level of 95 %.  相似文献   
22.
Journal of Solid State Electrochemistry - A novel electrochemical method for determination of losartan using a glassy carbon electrode modified with carbon black nanoparticles immobilized within a...  相似文献   
23.
New progress in the application of voltammetry of immobilized microparticles (VIM) technique in electroanalytical chemistry is reported in this work through the determination of hydroquinone in dermatologic cream samples. The designed electrode was based on a glassy carbon electrode modified with a crosslinked chitosan film containing immobilized carbon black nanoparticles and hydroquinone standards or sample. The electrochemical features of immobilized hydroquinone were explored, which a fast electron transfer kinetic was verified from the perfect reversible redox behavior of this molecule. All the experimental conditions were optimized, including supporting electrolyte condition (composition, pH, and ionic strength) and technical parameters of differential pulse voltammetry (DPV). Under the optimized experimental conditions, the analytical curve was linear by a wide concentration range from 2.7 to 43 ng, with detection and quantification limits of 0.045 and 0.15 ng, respectively. Two commercial dermatologic cream samples were successfully immobilized and analyzed using the proposed VIM procedure, and the results were similar to those recorded by a spectrophotometric comparative procedure. Our set of results represents a unique and exciting advance in the scenario of electroanalytical chemistry for future applications.  相似文献   
24.
The hydroxyl radicals electrochemically generated in situ on a boron-doped diamond (BDD) electrode have been investigated for the first time in different electrolyte media, over the whole pH range between 1 and 11. A more extensive characterisation of BDD electrochemical properties is very important to understand the reactivity of organic compounds towards electrochemical oxidation on the BDD electrode, which is related to their interaction with adsorbed hydroxyl radicals due to water oxidation on the electrode surface. An oxidation peak corresponding to the transfer of one electron and one proton was observed in pH <9 electrolytes, associated with the water discharge process and electrochemical generation of hydroxyl radicals, which can interact and enhance the electro-oxidation of organic compounds. In pH >9 electrolytes the electrochemical generation of hydroxyl radicals was not observed; ammonia buffer electrolyte gave a pH-independent peak corresponding to the ammonia oxidation reaction. Additionally, for most pH values studied, a few small peaks associated with the electrochemical interaction between non-diamond carbon species on the doped diamond electrode surface and the electrolyte were also seen, which suggests that the doped diamond is relatively unreactive, but not completely inert, and the electrogenerated hydroxyl radicals play a role as mediator in the oxidation of organics.  相似文献   
25.
In this work, a renewable tyrosinase-based biosensor was developed for the detection of catechol, using a carbon black paste electrode, without any mediator. The effect of pH, type of electrolyte, and amount of tyrosinase enzyme were explored for optimum analytical performance. The best-performing biosensor in amperometric experiments at potential −0.2 V vs. Ag/AgCl (3 mol L−1 KCl) was obtained using a 0.1 mol L−1 phosphate buffer solution (pH 7.0) as electrolyte. Under optimized conditions, the proposed biosensor had two concentration linear ranges from 5.0×10−9 to 4.8×10−8 and from 4.8×10−8 to 8.5×10−6 mol L−1 and a limit of detection of 1.5×10−9 mol L−1. The apparent Michaelis-Menten constant ( ) was calculated by the amperometric method, and the obtained value was 1.2×10−5 mol L−1 whose result was similar when compared with other studies previously. The biosensor was applied in river water samples, and the results were very satisfactory, with recoveries near 100 %. In addition, the response of this biosensor for different compounds, taking into account their molecular structures was investigated and the results obtained showed no interference with the response potential of catechol. The electrochemical biosensor developed in this work can be considered highly advantageous because it does not require the use of a mediator (direct detection) for electrochemical response, and also because it is based on a low-cost materials that can be used with success to immobilise other enzymes and/or biomolecules.  相似文献   
26.
A greener and sensitive procedure for spectrophotometric determination of phenols based on a multicommuted flow system with a 100 cm optical path flow cell is presented. The method exploited the oxidative coupling of phenolic compounds with 4-aminoantipyrine in alkaline medium containing potassium hexacyanoferrate(III). Sensitivity was 80-fold higher than that achieved with a 1 cm flow cell, making feasible the determination of phenols in the 10-100 μg l−1 range with a detection limit estimated as 1 μg l−1 phenol. The sampling rate and the coefficient of variation were estimated as 90 determinations per hour and 0.6% (n=10), respectively. The multicommutation approach allowed a 200-fold reduction of the reagent consumption in comparison with the reference batch method. Moreover, the chloroform extraction for analyte concentration is unnecessary in view of the increase in sensitivity. Recoveries within 93.3 and 106% were achieved for determination of phenol in natural and wastewater samples. Results agreed with the obtained by a reference method at the 95% confidence level.  相似文献   
27.
The preparation and electrochemical characterization of a carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) as well as its behavior as electrocatalyst toward the oxidation of N-acetylcysteine were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of N-acetylcysteine were explored using sweep linear voltammetry. The best voltammetric response was observed for a paste composition of 20% (w/w) copper(II) hexacyanoferrate(III) complex, acetate buffer solution at pH of 6.0 as the electrolyte and scan rate of 10 mV s− 1. A linear voltammetric response for N-acetylcysteine was obtained in the concentration range from 1.2 × 10− 4 to 8.3 × 10− 4 mol L− 1, with a detection limit of 6.3 × 10− 5 mol L− 1. The proposed electrode is useful for the quality control and routine analysis of N-acetylcysteine in pharmaceutical formulations.  相似文献   
28.
A carbon paste electrode modified with copper(II) phosphate immobilized in a polyester resin (CuP-Poly) is proposed for voltammetric determination of L-ascorbic acid in pharmaceutical formulations. The modified electrode allows the detection of L-ascorbic acid at lower anodic potentials than observed at unmodified electrodes. Several parameters that can influence the voltammetric response of the proposed electrode such as carbon paste composition, pH, scan rate, and possible interference were investigated. The peak current was proportional to the concentration of ascorbic acid in the range 2.0 x 10(-5) to 3.2 x 10(-3) mol L(-1) with a detection limit of 1.0 x 10(-5) mol L(-1). The stability and repeatability of the electrode for the determination of L-ascorbic acid are also discussed. Amperometric response was also recorded for electrocatalytic oxidation of the L-ascorbic acid. Concentrations of the vitamin C in pharmaceutical formulations (tablets) measured using the modified electrode and a titrimetric method are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   
29.
Formaldehyde in air was detected and assayed with a piezoelectric quartz crystal coated with a 7,10-dioxa-3,4-diaza-1,5,12,16-hexadecatetrol/chromotropic acid solution. Water vapor and several gaseous interferents were removed by passing the sampling stream through a column of anhydrous magnesium perchlorate. The response curves were linear in the concentration ranges 0.4-4.5 and 0.4-3.6 ppm v/v CH(2)O with and without the scrubber column, respectively. A single coating was used for 12 days (500 assays) without significant loss in sensitivity. With a single-point daily recalibration, the useful lifetime of the coating is about 2 months.  相似文献   
30.
A simple and highly selective electrochemical method was developed for the simultaneous determination of aspartame and cyclamate in dietary products at a boron-doped diamond (BDD) electrode. In square-wave voltammetric (SWV) measurements, the BDD electrode was able to separate the oxidation peak potentials of aspartame and cyclamate present in binary mixtures by about 400 mV. The detection limit for aspartame in the presence of 3.0x10(-4) mol L(-1) cyclamate was 4.7x10(-7) mol L(-1), and the detection limit for cyclamate in the presence of 1.0x10(-4) mol L(-1) aspartame was 4.2x10(-6) mol L(-1). When simultaneously changing the concentration of both aspartame and cyclamate in a 0.5 mol L(-1) sulfuric acid solution, the corresponding detection limits were 3.5x10(-7) and 4.5x10(-6) mol L(-1), respectively. The relative standard deviation (R.S.D.) obtained was 1.3% for the 1.0x10(-4) mol L(-1) aspartame solution (n=5) and 1.1% for the 3.0x10(-3) mol L(-1) cyclamate solution. The proposed method was successfully applied in the determination of aspartame in several dietary products with results similar to those obtained using an HPLC method at 95% confidence level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号