首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   117篇
  国内免费   41篇
化学   1664篇
晶体学   11篇
力学   35篇
数学   121篇
物理学   217篇
  2024年   5篇
  2023年   18篇
  2022年   81篇
  2021年   74篇
  2020年   118篇
  2019年   115篇
  2018年   156篇
  2017年   100篇
  2016年   142篇
  2015年   105篇
  2014年   137篇
  2013年   235篇
  2012年   151篇
  2011年   150篇
  2010年   99篇
  2009年   91篇
  2008年   73篇
  2007年   45篇
  2006年   24篇
  2005年   28篇
  2004年   13篇
  2003年   16篇
  2002年   14篇
  2001年   5篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   8篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2048条查询结果,搜索用时 11 毫秒
51.
The electronic (energy gap and work function) as well as electrical properties (dipole moment, polarizability, and first hyperpolarizabilities) of the first-row transition metals decorated C24N24 cavernous nitride fullerene were explored using DFT calculations. The transition metals are decorated at N4 cavity of C24N24 fullerene. According to our spin polarized computations, the most stable spin state monotonically increases to sextet for Mn@C24N24 and thereafter dropped off gradually to singlet state for Zn@C24N24 system. The findings demonstrate that transition metals can remarkably decrease the HOMO-LUMO energy gap and work function values up to 63% and 21% of bare C24N24, respectively. As can be seen, when the Sc and Ti metals are located above the N4 cavity of fullerene, systems of enhanced static hyperpolarizabilities (β0) are delivered. These findings might provide an effective strategy to design high performance eletcro-optical materials based on carbon- nitride fullerene.  相似文献   
52.
We present a facile and efficient method for modifying the surface of silica-coated Fe3O4 magnetic nanoparticles (MNPs) with bis(pyrazolyl) triazine ruthenium(II) complex [ MNPs@BPT–Ru (II) ] . Field emission-scanning electron microscopy, thermogravimetric/derivative thermogravimetry analysis, X-ray powder diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectrometry analyses were employed for characterizing the structure of these nanoparticles. MNPs@BPT–Ru(II) nanoparticles proved to be a magnetic, reusable, and heterogeneous catalyst for the hydrogen transfer reduction of ketone derivatives. In addition, highly pure products were obtained with excellent yields in relatively short times in the presence of this catalyst. A comparison of this catalyst with those previously used for the hydrogen transfer reactions proved the uniqueness of MNPs@BPT–Ru(II) nanoparticle which is due to its inherent magnetic properties and large surface area. The presented method also had other advantages such as simple reaction conditions, eco-friendliness, high recovery ability, easy work-up, and low cost.  相似文献   
53.
54.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   
55.
The preparation of glass-ionomer cements based on the composition of SiO2–Al2O3–CaO–SrO–F and evaluation of their properties is described. Cements were prepared via the sol–gel method and characterized by XRD, BET, SEM, and EDAX analysis. The effect of various concentrations of Sr on in vitro bioactivity of the glass speciments was investigated. In vitro bioactivity of the samples was evaluated by soaking them in simulated body fluid followed by structural characterization using SEM and atomic absorption analysis. A glass specimen with 0.5 mol of Sr exhibited appropriate bioactivity.  相似文献   
56.
In this research, preparation of the magnetic nanoparticle, coating by a silica shell using (3‐aminopropyl) triethoxysilane and synthesis of a novel sulfonic acid‐substituted imidazolium‐based ionic liquid onto the surface of these particles via a multi‐component reaction, is described. The functionalized nanoparticles was loaded by Ni nanoparticles and characterized by means of techniques such as XRD, FTIR, SEM, EDX, TEM, TGA and ICP‐OES. The nanostructures have spherical shapes that ranged in size from 80 to 100 nm. The catalytic activity of these nanoparticles was tested in aerobic oxidation of primary alcohols that showed good performance in the wide range of primary alcohols in water at mild reaction conditions. As a second step of this work, the tandem oxidative synthesis of alkylacrylonitriles and bisindolylmethanes were investigated using primary alcohols under oxidation conditions. This catalyst system can be recovered using external magnet and reused for five consecutive cycles without significantly less of its activity.  相似文献   
57.
58.
59.
Casein gels were made from solutions sonicated by 24 and 130 kHz ultrasounds for 0, 60 and 120 min, followed by acidification with glucono-δ-lactone at 30 °C. The dynamics of gel formation were studied using rheological methods and microstructure of gels was monitored using scanning electron microscopy. Sonication postponed the gelation point to a lower pH value and increased the elasticity of freshly formed gels. It also resulted in gels with a more interconnected structure and smaller non-distinguishable particulates. This structure was especially dominant for the gel made from the solution already sonicated for 120 min.  相似文献   
60.
Following a recent investigation on the N(2D) + H2O reaction [Homayoon et al., J. Phys. Chem. Lett. 5, 3508 (2014)], we report on an experimental and theoretical study of the isotopologue N(2D) + D2O reaction. Crossed molecular beam (CMB) experiments were conducted at a collision energy of 10.3 kcal mol–1. Quasiclassical trajectory calculations were performed on a recent potential energy surface to derive the centre-of-mass functions necessary to simulate the CMB laboratory distributions. Excellent agreement was found. The importance of the channel leading to HON/DON was confirmed. The inclusion of this channel, in addition to that leading to the isomer HNO/DNO, can affect the models considering the coupling between nitrogen and oxygen chemistry in the upper atmosphere of Titan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号