首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   49篇
  国内免费   23篇
化学   848篇
晶体学   4篇
力学   20篇
数学   59篇
物理学   77篇
  2024年   4篇
  2023年   7篇
  2022年   29篇
  2021年   37篇
  2020年   64篇
  2019年   55篇
  2018年   80篇
  2017年   39篇
  2016年   73篇
  2015年   55篇
  2014年   72篇
  2013年   127篇
  2012年   69篇
  2011年   73篇
  2010年   52篇
  2009年   47篇
  2008年   43篇
  2007年   30篇
  2006年   9篇
  2005年   13篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
  1986年   1篇
  1985年   3篇
  1976年   1篇
排序方式: 共有1008条查询结果,搜索用时 15 毫秒
11.
Journal of Solid State Electrochemistry - A stable suspension of nanopolyaniline (nPANI) particles can be used in various applications instead of a polyaniline film. The electrochemical behavior of...  相似文献   
12.
Cu ( II ) supported on poly(8‐hydroxyquinoline‐p‐styrenesulfonate) (Cu ( II )@PHQSS) was prepared and fully characterized by the different techniques including fourier transform infrared spectroscopy (FT‐IR), 1H NMR, 13C NMR, thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG), differential thermal analysis (DTA), scanning electron microscope (SEM) and energy dispersive X‐ray analysis (EDS). Afterward, the Cu ( II )@PHQSS as nanostructured catalyst was used as catalyst for the synthesis of hexahydroquinolines.  相似文献   
13.
A simple, inexpensive, environmentally friendly and efficient route for Michael addition of indoles to α,β-unsaturated ketones using pentafluorophenylammonium triflate (PFPAT) as a catalyst is described. Various indole derivatives were synthesized in good to excellent yields. The preparation of PFPAT catalyst from simple and readily available starting materials makes this method more affordable.  相似文献   
14.
In this work, we report a facile hydrothermal method for the preparation of three dimensional hollow ZnS nanostructures, using Zinc bis(salicyle aldehitato), Zn(Sal)2, thioacetamide (TAA) and thioglycolic acid (TGA) as Zn2+, sulfur source and capping agent, respectively. The ZnS solid and hollow sphere was produced from the self-assembly of nanoparticles with diameters of 11 ± 2 nm with TGA and TGA, TAA, respectively. Furthermore, with changing zinc precursor from Zn(Sal)2 to zinc acetate [Zn(OAC)2], ZnS nanorods were obtained. The products were characterized by XRD, SEM, TEM, selected area electron diffraction, and FT-IR spectra. The influence of surfactant (Polyethylene glycol) on the morphology of the products was also investigated. Possible formation mechanism and optical properties of these architectures were also reported.  相似文献   
15.
In this work, Pb(II)N,N-bis(salicylidene)-ethylenediamine; [Pb(salen)]; was applied as lead precursor to synthesis PbSe nanostructures. Besides [Pb(salen)], SeCl4 and reducing agents like N2H4·H2O have been employed for the production of PbSe nanostructures via a solvothermal route at 180 °C for 3 h in propylene glycol. The effect of preparation factors such as temperature, reaction time, and surfactant on the morphology of PbSe nanostructures was investigated. The experimental results indicated that PbSe synthesized at 150 and 210 °C was composed of agglomerated particles. On the other hand, the use of KBH4 as reducing agent led to produce PbSe with higher particle size and agglomeration. The as-prepared PbSe nanostructures were characterized by XRD, SEM, TEM, EDS, and FT-IR.  相似文献   
16.
17.
18.
By the reaction of 4-chlorobenzaldehyde with ethyl acetoacetate, malononitrile, and hydrazine hydrate, 6-amino-4-(4-chlorophenyl)-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile was prepared and then reacted with salicylaldehyde and CoCl2·6H2O to produce nano-Co-[4-cholorophenyl-salicylaldimine-methylpyranopyrazole]Cl2 (nano-[Co-4CSMP]Cl2). The prepared nano-Schiff base complex was reported for the first time and fully characterized by Fourier transform-infrared spectroscopy, thermal gravimetric analysis, differential thermal gravimetric analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and Brunner–Emmett–Teller analyses and applied as an efficient catalyst for the synthesis of some 1-amidoalkyl-2-naphthol derivatives.  相似文献   
19.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   
20.
We present a facile and efficient method for modifying the surface of silica-coated Fe3O4 magnetic nanoparticles (MNPs) with bis(pyrazolyl) triazine ruthenium(II) complex [ MNPs@BPT–Ru (II) ] . Field emission-scanning electron microscopy, thermogravimetric/derivative thermogravimetry analysis, X-ray powder diffraction, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and energy-dispersive X-ray spectrometry analyses were employed for characterizing the structure of these nanoparticles. MNPs@BPT–Ru(II) nanoparticles proved to be a magnetic, reusable, and heterogeneous catalyst for the hydrogen transfer reduction of ketone derivatives. In addition, highly pure products were obtained with excellent yields in relatively short times in the presence of this catalyst. A comparison of this catalyst with those previously used for the hydrogen transfer reactions proved the uniqueness of MNPs@BPT–Ru(II) nanoparticle which is due to its inherent magnetic properties and large surface area. The presented method also had other advantages such as simple reaction conditions, eco-friendliness, high recovery ability, easy work-up, and low cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号