全文获取类型
收费全文 | 143篇 |
免费 | 0篇 |
专业分类
化学 | 72篇 |
晶体学 | 1篇 |
力学 | 9篇 |
物理学 | 61篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 3篇 |
2019年 | 1篇 |
2016年 | 1篇 |
2014年 | 2篇 |
2013年 | 3篇 |
2012年 | 3篇 |
2011年 | 5篇 |
2010年 | 4篇 |
2009年 | 6篇 |
2008年 | 3篇 |
2007年 | 3篇 |
2006年 | 6篇 |
2005年 | 5篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 4篇 |
2000年 | 5篇 |
1999年 | 6篇 |
1997年 | 3篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 5篇 |
1993年 | 2篇 |
1992年 | 6篇 |
1991年 | 1篇 |
1990年 | 6篇 |
1989年 | 6篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1982年 | 2篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1977年 | 5篇 |
1976年 | 1篇 |
1975年 | 3篇 |
1974年 | 4篇 |
1973年 | 2篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1931年 | 1篇 |
1927年 | 1篇 |
排序方式: 共有143条查询结果,搜索用时 15 毫秒
41.
Ropp J Lawrence C Farrar TC Skinner JL 《Journal of the American Chemical Society》2001,123(33):8047-8052
Experimental NMR measurements of the deuterium and (17)O T(1) relaxation times in deuterium-enriched liquid water have been performed from 275 to 350 K. These relaxation times can yield rotational correlation times of appropriate molecule-fixed unit vectors if the quadrupole coupling constants and asymmetry parameters are known. We determine the latter from ab initio studies of water clusters and experimental chemical shift measurements. We find that the rotational correlation time for the OD bond vector in D(2)(16)O varies from 5.8 ps at 275 K to 0.86 ps at 350 K, and that the rotational correlation time for the out-of-plane vector of dilute D(2)(17)O in D(2)(16)O varies from 4.4 ps at 275 K to 0.64 ps at 350 K. These results indicate that the rotational motion of water is anisotropic. Molecular dynamics simulations of liquid water are in good agreement with these experiments at the higher temperatures, but the simulation results are considerably faster than experiment at the lower temperatures. 相似文献
42.
43.
A dilute solution of water in a hydrophobic solvent, such as carbon tetrachloride (CCl4), presents an opportunity to study the rotational properties of water without the complicating effects of hydrogen bonds. We report here the results of theoretical, experimental, and semiempirical studies of a 0.03 mole percent solution of water in CCl4. It is shown that for this solution there are negligible water-water interactions or water-CCl4 interactions; theoretical and experimental values for proton NMR chemical shifts (deltaH) are used to confirm the minimal interactions between water and the CCl4. Calculated ab initio values and semiempirical values for oxygen-17 and deuterium quadrupole coupling constants (chi) of water/CCl4 clusters are reported. Experimental values for the 17O, 2H, and 1H NMR spin-lattice relaxation times, T1, of 0.03 mole percent water in dilute CCl4 solution at 291 K are 94+/-3 ms, 7.0+/-0.2 s, and 12.6+/-0.4 s, respectively. These T1 values for bulk water are also referenced. "Experimental" values for the quadrupole coupling constants and relaxation times are used to obtain accurate, experimental values for the rotational correlation times for two orthogonal vectors in the water molecule. The average correlation time, tauc, for the position vector of 17O (orthogonal to the plane of the molecule) in monomer water, H2(17)O, is 91 fs. The average value for the deuterium correlation time for the deuterium vector in 2H2O is 104 fs; this vector is along the OD bond. These values indicate that the motion of monomer water in CCl4 is anisotropic. At 291 K, the oxygen rotational correlation time in bulk 2H2(17)O is 2.4 ps, the deuterium rotational correlation time in the same molecule is 3.25 ps. (Ropp, J.; Lawrence, C.; Farrar, T. C.; Skinner, J. L. J. Am. Chem. Soc. 2001, 123, 8047.) These values are a factor of about 20 longer than the tauc value for dilute monomer water in CCl4. 相似文献
44.
Results from a series of experiments designed to measure the stiffness of low-aspect-ratio, reinforced-concrete shear walls subjected to simulated seismic inputs on a shake table are reported. The geometry of the test structures allows them to be modeled as single-degree-of-freedom systems. Forces were estimated from accelerometer measurements on masses attached to the structures. Dynamic relative-displacement measurements were obtained from groups of strain gages wired in series to act as one continuous gage. Because this method measures relative displacements, potential sources of error associated with unspecified base motion are avoided. tiffness values determined from the relative displacement measurements were compared with stiffness values determined indirectly from frequency-response functions. Measured, accelerometer data were used to calculate the frequency-response functions. The stiffness values determined from the relative-displacement measurements gave results similar to those given by mechanics-of-materials beam theory that accounts for shear deformation. The stiffness values determined from the frequency-response functions were considerably less than those from the theory. 相似文献
45.
The proton transfer reaction between OH- and C2H2, the sole reactive process observed over the collision energy range from 0.37 to 1.40 eV, has been studied using the crossed beam technique and density-functional theory (DFT) calculations. The center of mass flux distributions of the product C2H- ions at three different energies are highly asymmetric, characteristic of a direct process occurring on a time scale much less than a rotational period of any transient intermediate. The maxima in the flux distributions correspond to product velocities and directions close to those of the precursor acetylene reactants. The reaction quantitatively transforms the entire exothermicity into internal excitation of the products, consistent with an energy release motif in which the proton is transferred early, in a configuration in which the forming bond is extended. This picture is supported by DFT calculations showing that the first electrostatically bound intermediate on the reaction pathway is the productlike C2H- H2O species. Most of the incremental translational energy in the two higher collision energy experiments appears in product translational energy, and provides an example of induced repulsive energy release characteristic of the heavy+light-heavy mass combination. 相似文献
46.
Bajaj VS Farrar CT Hornstein MK Mastovsky I Vieregg J Bryant J Eléna B Kreischer KE Temkin RJ Griffin RG 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2003,160(2):85-90
In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments. 相似文献
47.
A C3-symmetric phosphine with indolyl substituents has been synthesized that demonstrates the capability to bind anions through the indole NH sites and coordinate metal centres through the phosphorus centre. 相似文献
48.
Photodissociation spectra for mass-selected Mg(+)(NH(3))(n) clusters for n=1 to 7 are reported over the photon energy range from 7000 to 38 500 cm(-1). The singly solvated cluster, which dissociates primarily via a N-H bond cleavage, exhibits a resolved vibrational structure corresponding to two progressions in the intracluster Mg(+)-NH(3) modes. The addition of the second, third, and fourth solvent molecules results in monotonic redshifts that appear to halt near 8500 cm(-1), where a sharp feature in the electronic spectrum is correlated with the formation of a Mg(+)(NH(3))(4) complex with T(d) symmetry and the closing of the first solvation shell. The spectra for the clusters with 5 to 7 solvent molecules strongly resemble that for the tetramer, suggesting that these solvent molecules occupy a second solvation shell. The wavelength-dependent branching-ratio measurements show that increasing the photon energies generally result in the loss of additional solvent molecules but that enhancements for a specific solvent number loss may reveal special stability for the resultant fragments. The majority of the experimental evidence suggests that the decay of these clusters occurs via the internal conversion of the initially excited electronic states to the ground state, followed by dissociation. In the case of the monomer, the selective cleavage of a N-H bond in the solvent suggests that this internal-conversion process may populate regions of the ground-state surface in the vicinity of an insertion complex H-Mg(+)-NH(2), whose existence is predicted by ab initio calculations. 相似文献
49.
An analytical procedure is described for the determination of p.p.b. levels of long-chain amines in river and sea water and uranium processing raffinates. The method involves extraction of the amine as an ion-association complex with chromate from sulphuric acid media into chloroform. The extracted chromium(VI) is then determined spectrophotometrically with diphenylcarbazide. With a 100-ml sample, the limit of detection for Alamine 336 (a commercial tertiary amine mixture) is 15 p.p.b. 相似文献
50.