首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   18篇
  国内免费   3篇
化学   206篇
晶体学   1篇
数学   10篇
物理学   33篇
  2023年   2篇
  2022年   9篇
  2021年   5篇
  2020年   16篇
  2019年   6篇
  2018年   11篇
  2017年   5篇
  2016年   27篇
  2015年   13篇
  2014年   26篇
  2013年   35篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   5篇
  2008年   12篇
  2007年   13篇
  2006年   10篇
  2005年   3篇
  2004年   8篇
  2003年   6篇
  2002年   1篇
  1993年   1篇
排序方式: 共有250条查询结果,搜索用时 156 毫秒
41.
The electrocatalytic oxidation of sulfite was investigated at carbon ionic liquid electrode (CILE). This electrode is a very good alternative to previously described electrodes because the electrocatalytic effect is achieved without any electrode modification. Comparative experiments were carried out using carbon paste electrode (CPE) and glassy carbon electrode (GCE). At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for sulfite with a peak potential of 0.55 V vs. Ag/AgCl. Sulfite oxidation at CILE does not result in deactivation of the electrode surface. The kinetic parameters for this irreversible heterogeneous electron transfer process were determined. Under optimal experimental conditions, the peak current response increased linearly with sulfite concentration over the range of 6-1000 μM. The detection limit of the method was 4 μM. The method was applied to the determination of sulfite in mineral water, grape juice and non-alcoholic beer samples.  相似文献   
42.
A glassy carbon electrode (GCE) modified with polymeric nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid was prepared. The modified GCE was applied to sensitive and fairly selective electrochemical determination of the mycotoxin zearalenone. Electrocatalytic oxidation is performed in a solution containing 20 % (V/V) acetonitrile and 80 % (V/V) of 1 M perchloric acid. Cyclic voltammetry and square wave voltammetry revealed a well-defined electrocatalytic peak current at overpotential of +0.69 V versus Ag/AgCl. Under optimized experimental conditions, there is a linear relationship between anodic peak current and zearalenone concentration in the range from 0.03 to 35 ng?mL ̄1, and the detection limit is 0.01 ng?mL ̄1. The method was successfully applied to the analysis of zearalenone in spiked food samples and gave recoveries between 95.6 and 104.0 %.
Graphical abstract The nanocomposite (PdVC-PIL) was prepared by polymerization of ionic liquid monomer (PIL) in presence of Pd nanoparticles on Vulcan XC-72R carbon (PdVC). The solution containing nanocomposite was placed on the glassy carbon electrode (GCE). The voltammetry activity of modified electrode (PdVC-PIL/GCE) was compared to a bare GCE for zearalenone determination.
  相似文献   
43.
A σ-hole is defined as an electron-deficient region on the extension of a covalently bonded group IV–VII atoms. If the electronic density in the σ-hole is sufficiently low, then this region will have a positive electrostatic potential, which allows attractive noncovalent interactions with negative sites. SO2X2 and SeO2X2 (X = F, Cl and Br) have three Lewis acid sites of σ-hole located in the outermost of chalcogen atom and X end, participating in the chalcogen and halogen bonds with NH3 and H2O, respectively. MP2/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ calculations reveal that for a given halogen atom, SeO2X2 forms stronger chalcogen bond interactions than SO2X2 counterpart. Almost a perfect linear relationship is evident between the interaction energies and the magnitudes of the product of most positive and negative electrostatic potentials. The interaction energies calculated by M06-2X and MP2 methods are almost consistent with each other.  相似文献   
44.
The concentration vs composition diagram of aggregate formation of the dodecyltrimethylammonium bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) mixture in aqueous solution at rather dilute region was constructed by analyzing the surface tension, turbidity, and electrical conductivity data and inspected by cryo-TEM images and dynamic light scattering data. Although the aqueous solution of DTAB forms only micelles, the transition from monomer to small aggregates and then to vesicle was found at 0.1 < X2 相似文献   
45.
A three‐step method for the deposition of CH3NH3PbI3 perovskite films with a high crystalline structure and large cuboid overlayer morphology is reported. The method includes PbI2 deposition, which is followed by dipping into a solution of C4H9NH3I (BAI) and (BA)2PbI4 perovskite formation. In the final step, the poorly thermodynamically stable (BA)2PbI4 phase converts into the more stable CH3NH3PbI3 perovskite by dipping into a solution of CH3NH3I. The final product is characterized by XRD, SEM, UV/Vis, and photoluminescence analysis methods. The experimental results indicate that the prepared perovskite has cuboids with high crystallinity and large sizes (up to 1 μm), as confirmed by XRD and SEM data. Photovoltaic investigations show that the three‐step method results in higher solar cell efficiency (15 % enhancement in efficiency) with a better reproducibility than the conventional two‐step deposition method.  相似文献   
46.
V and La co-doped and undoped ZnO thin films were deposited on a glass substrate via the sol–gel method to investigate the structural, optical, and wettability of ZnO thin film by changing the V-doping concentration. Microstructure and water contact angles of the films were measured by SEM and contact angle goniometer, respectively. SEM studies revealed that the grain size and surface roughness of the film were changed by doping concentration. In addition, the contact angles were studied to find the possible effects of doping on the hydrophilicity of the film, indicating that the ZnO films were hydrophobic in nature. Finally, a good correlation was observed between the SEM micrographs and contact angle results, and the nature of ZnO film was found to be changed from hydrophobic to hydrophilic.  相似文献   
47.
Rotational analyses are reported for a number of newly-discovered vibrational levels of the S1-trans1Au) state of C2H2. These levels are combinations where the Franck-Condon active and vibrational modes are excited together with the low-lying bending vibrations, and . The structures of the bands are complicated by strong a- and b-axis Coriolis coupling, as well as Darling-Dennison resonance for those bands that involve overtones of the bending vibrations. The most interesting result is the strong anharmonicity in the combinations of (trans bend, ag) and (in-plane cis bend, bu). This anharmonicity presumably represents the approach of the molecule to the trans-cis isomerization barrier, where ab initio results have predicted the transition state to be half-linear, corresponding to simultaneous excitation of and . The anharmonicity also causes difficulty in the least squares fitting of some of the polyads, because the simple model of Coriolis coupling and Darling-Dennison resonance starts to break down. The effective Darling-Dennison parameter, K4466, is found to increase rapidly with excitation of , while many small centrifugal distortion terms have had to be included in the least squares fits in order to reproduce the rotational structure correctly. Fermi resonances become important where the K-structures of different polyads overlap, as happens with the 2131B1 and 31B3 polyads (B = 4 or 6). The aim of this work is to establish the detailed vibrational level structure of the S1-trans state in order to search for possible S1-cis (1A2) levels. This work, along with results from other workers, identifies at least one K sub-level of every single vibrational level expected up to a vibrational energy of 3500 cm−1.  相似文献   
48.
49.
MP2/aug‐cc‐pVTZ calculations are performed on complexes of YO3 (Y = S, Se) with a series of electron‐donating chalcogen bases YHX (X = H, Cl, Br, CCH, NC, OH, OCH3). These complexes are formed through the interaction of a positive electrostatic potential region (π‐hole) on the YO3 molecule with the negative region in YHX. Interaction energies of the binary O3Y???YHX complexes are in the range of ?4.37 to ?12.09 kcal/mol. The quantum theory of atoms in molecules and the natural bond orbital analysis were applied to characterize the nature of interactions. It was found that the formation and stability of these binary complexes are ruled mainly by electrostatic effects, although the electron charge transfer from YHX to YO3 unit also seems to play an important role. In addition, mutual influence between the Y???N and Y???Y interactions is studied in the ternary HCN???O3Y???YHX complexes. The results indicate that the formation of a Y???N interaction tends to weaken Y???Y bond in the ternary systems. Although the Y???Y interaction is weaker than the Y???N one, however, both types of interactions seem to compete with each other in the HCN???O3Y???YHX complexes. © 2016 Wiley Periodicals, Inc.  相似文献   
50.
In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0–500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号