首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学   60篇
数学   1篇
物理学   21篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
11.
The synthesis of 2,5-bis(3-bromo-5-isoxazolyl)tetrahydrofuran ( 2 ) and 2,5-bis(3-methoxy-5-isoxazolyl)tetrahydrofuran ( 3 ) have been accomplished in three and four steps respectively. Cis- and trans-isomers have been separated and fully characterized. Differently from synthetic schemes so far utilized for the preparation of the 2,5-diheteroaryltetrahydrofuran analogs, our approach involves the direct synthesis of a key intermediate containing both isoxazole rings and diol function for the final cyclization. Starting from succinic aldehyde, the new 1,7-octadiyne-3,6-diol ( 4 ) was prepared and was submitted to a double cycloaddition with bromonitrile oxide to yield the key intermediate 1,4-bis(3-bromo-5-isoxazolyl)-1,4-butanediol. The methoxy analogs 3 were obtained by methanolysis of the bromo derivatives 2 .  相似文献   
12.
A simple valence electron-only theory based on an approximate frozen core approach and an exact core-valence strong orthogonality condition is developed for atomic and molecular systems. A unique reduced basis is introduced in which both core and valence orbitals are expanded. The core representation is roughly approximated, and the valence orbital overlap with the corresponding all-electron reference functions is nearly exact. The size of the reduced basis in terms of primitive functions is practically the same as that adopted by effective core potential methods in which the valence orbitals have the correct nodal properties. Results obtained with the present approach are presented for LiO, BeO and CaO molecules, and compared with the corresponding all-electron frozen core calculations. In addition, a detailed investigation on Li n Be clusters (n=1,..., 6) is carried out.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   
13.
The effect of strain in the axial coordination of imidazole to the heme has been studied in the chelate complexes deuterohemin-histidine (DH-His) and deuterohemin-alanylhistidine (DH-AlaHis). Molecular mechanics calculations indicate that three types of distortion of the axial ligand occur in DH-His, due to the relatively short length of the arm carrying the donor group: tilting off-axis, tipping, and inclination of the imidazole plane with respect to the axial Fe-N bond. The effects of tilting (Deltagamma approximately 10 degrees ) and inclination of the imidazole ring (Deltadelta approximately 17 degrees ) are dominant, while tipping is small and is probably of little importance here. By contrast, the axial imidazole coordination is normal in DH-AlaHis and other computed deuterohemin-dipeptide or -tripeptide complexes where histidine is the terminal residue, the only exception being DH-ProHis, where the rigidity of the proline ring reduces the flexibility of the chelating arm. The distortion in the axial iron-imidazole bond in DH-His has profound and negative influence on the binding and catalytic properties of this complex compared to DH-AlaHis. The former complex binds more weakly carbon monoxide, in its reduced form, and imidazole, in its oxidized form, than the latter. The catalytic efficiency in peroxidative oxidations is also reduced in DH-His with respect to DH-AlaHis. The activity of the latter complex is similar to that of microperoxidase-11, the peptide fragment incorporating the heme that results from hydrolytic cleavage of cytochrome c.  相似文献   
14.
15.
An ab-initio molecular dynamics procedure without precalculation of the Born-Oppenheimer energy surface based on an iterative non-local density functional method employing Gaussian atomic basis has been developed. Analytical gradients are calculated and used for the propagation of nuclei. Sufficiently long trajectories can be calculated at an acceptable computational cost, allowing for analysis of dynamical behaviour of small metallic clusters. This is illustrated on an example of the Li8 cluster. Temperature behaviour of different type of isomers has been investigated. Calculated power spectra allow to identify the presence of more than one isomeric forms along the given trajectories.  相似文献   
16.
Upon irradiation with ultraviolet wavelengths, Fe2(S2C3H6)(CO)6, a simple model of the [FeFe]‐hydrogenase active site, undergoes CO dissociation to form the unsaturated Fe2(S2C3H6)(CO)5 species and successively a solvent adduct at the vacant coordination site. In the present work, the CO‐photolysis of Fe2(S2C3H6)(CO)6 was investigated by density functional theory (DFT) and time‐dependent DFT (TDDFT). Trans Fe2(S2C3H6)(CO)5 form and the corresponding trans heptane or acetonitrile solvent adducts are the lowest energy ground state forms. CO dissociation barriers computed for the lowest triplet state are roughly halved with respect to those for the ground state suggesting that some low‐lying excited potential energy surface (PES) could be loosely bound with respect to Fe? C bond cleavage. The TDDFT excited state PESs and geometry optimizations for the excited states likely involved in the CO‐photolysis suggest that the Fe? S bond elongation and the partial isomerization toward the rotated form could take place simultaneously, favoring the trans CO photodissociation. © 2014 Wiley Periodicals, Inc.  相似文献   
17.
18.
The di-iron complex Fe2(S2C3H6)(CO)6 (a), one of the simplest functional models of the Fe-hydrogenases active site, is able to electrocatalyze proton reduction. In the present study, the H2 evolving path catalyzed by a has been characterized using density functional theory. It is showed that, in the early stages of the catalytic cycle, a neutral mu-H adduct is formed; monoelectron reduction and subsequent protonation can give rise to a diprotonated neutral species (a-muH-SH), which is characterized by a mu-H group, a protonated sulfur atom, and a CO group bridging the two iron centers, in agreement with experimental IR data indicating the formation of a long-lived mu7-CO species. H2 release from a-muH-SH, and its less stable isomer a-H2 is kinetically unfavorable, while the corresponding monoanionic compounds (a-muH-SH- and a-H2-) are more reactive in terms of dihydrogen evolution, in agreement with experimental data. The key species involved in electrocatalysis have structural features different from the hypothetical intermediates recently proposed to be involved in the enzymatic process, an observation that is possibly correlated with the reduced catalytic efficiency of the biomimetic di-iron assembly.  相似文献   
19.
Density functional theory was used to compare reaction pathways for H2 formation and H+ reduction catalyzed by models of the binuclear cluster found in the active site of [Fe] hydrogenases. Terminal H+ binding to an Fe(I)-Fe(I) form, followed by monoelectron reduction and protonation of the di(thiomethyl)amine ligand, can conveniently lead to H2 formation and release, suggesting that this mechanism could be operative within the enzyme active site. However, a pathway that implies the initial formation of Fe(II)-Fe(II) mu-H species and release of H2 from an Fe(II)-Fe(I) form is characterized by only slightly less favored energy profiles. In both cases, H2 formation becomes less favored when taking into account the competition between CN and amine groups for H+ binding, an observation that can be relevant for the design of novel synthetic catalysts. H2 cleavage can take place on Fe(II)-Fe(II) redox species, in agreement with previous proposals [Fan, H.-J.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3828] and, in complexes characterized by terminal CO groups, does not need the involvement of an external base. The step in H2 oxidation characterized by larger energy barriers corresponds to the second H+ extraction from the cluster, both considering Fe(II)-Fe(II) and Fe(II)-Fe(III) species. A comparison of the different reaction pathways reveals that H2 formation could involve only Fe(I)-Fe(I), Fe(II)-Fe(I), and Fe(II)-Fe(II) species, whereas Fe(III)-Fe(II) species might be relevant in H2 cleavage.  相似文献   
20.
Electrospray mass spectrometry/mass spectrometry was used to investigate the gas‐phase properties of protonated expanded porphyrins, in order to correlate those with their structure and conformation. We have selected five expanded meso‐pentafluorophenyl porphyrins, respectively, a pair of oxidized/reduced fused pentaphyrins (22 and 24 π electrons), a pair of oxidized/reduced regular hexaphyrins (26 and 28 π electrons) and a regular doubly N‐fused hexaphyrin (28 π electrons). The gas‐phase behavior of the protonated species of oxidized and reduced expanded porphyrins is different. The oxidized species (aromatic Hückel systems) fragment more extensively, mainly by the loss of two HF molecules. The reduced species (Möbius aromatic or Möbius‐like aromatic systems) fragment less than their oxidized counterparts because of their increased flexibility. The protonated regular doubly fused hexaphyrin (non‐aromatic Hückel system) shows the least fragmentation even at higher collision energies. In general, cyclization through losses of HF molecules decreases from the aromatic Hückel systems to Möbius aromatic or Möbius‐like aromatic systems to non‐aromatic Hückel systems and is related to an increase in conformational distortion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号