首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   10篇
化学   153篇
晶体学   1篇
数学   10篇
物理学   7篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   5篇
  2015年   11篇
  2014年   4篇
  2013年   6篇
  2012年   15篇
  2011年   22篇
  2010年   10篇
  2009年   8篇
  2008年   13篇
  2007年   6篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1981年   1篇
  1977年   2篇
  1955年   1篇
  1927年   2篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
81.
A simple technique has been evaluated for the initial assessment of heavy metal pollution in coastal sediments, in order to overcome many difficulties involved in routine monitoring of such analytes.The leaching of sediment samples with a cold dilute HC1, which affects only the non-residual part of the metals, gives the anthropogenic fingerprints on the bottom deposits and provides more data on the extent of heavy metal pollution relatively to the total sediment analysis.The proposed technique has been applied in most Hellenic coastal regions, both polluted and unpolluted. Comparisons between the various regions with the use of an enrichment factor have been made, which establish the gross degree to which a sediment population has been subjected to heavy metal pollution from the overlying waters.  相似文献   
82.
The redox activity of a ferrocenyl monolayer grafted on an n-type Si111 substrate was investigated by scanning electrochemical microscopy (SECM) in conditions where the substrate plays the role of an insulator. This approach permits the differentiation between the different possible electron-transfer and mass-transport pathways occurring at the interface. As an exciting result, the thin ferrocenyl monolayer behaves like a purely conducting material, highlighting very fast electron communication between immobilized ferrocenyl headgroups in a 2D-like charge-transport mechanism.  相似文献   
83.
84.
Formation of the thymine dimer is one of the most important types of photochemical damage in DNA, responsible for several biological pathologies. Though specifically designed proteins (photolyases) can efficiently repair this type of damage in living cells, an autocatalytic activity of the DNA itself was recently discovered, allowing for a self-repair mechanism. In this paper, we provide the first molecular dynamics study of the splitting of thymine dimer radical anions, using a quantum mechanical/molecular mechanics (QM/MM) approach based on density functional theory (DFT) to describe the quantum region. A set of seven statistically representative molecular dynamics trajectories is analyzed. Our calculations predict an asynchronously concerted process in which C5-C5' bond breaking is barrierless while C6-C6' bond breaking is characterized by a small free energy barrier. An upper bound of 2.5 kcal/mol for this barrier is estimated. Moreover, the molecular dynamics study and the low free energy barrier involved in C6-C6' bond breaking characterize the full process as being an ultrafast reaction.  相似文献   
85.
A novel series of α-phenyl-N-tert-butyl nitrone derivatives, bearing a hydrophobic chain on the aromatic ring and three hydroxyl functions on the tert-butyl group, was synthesized through a short and convenient synthetic route based on a one-pot reduction/condensation of tris(hydroxymethyl)nitromethane with a benzaldehyde derivative. Because of the presence of hydroxyl functions on the tert-butyl group, an intramolecular Forrester-Hepburn reaction leading to the formation of an oxazolidine-N-oxyl compound was observed by electron paramagnetic resonance (EPR). The mechanism of cyclization was further studied by computational methods showing that intramolecular hydrogen bonding and high positive charge on the nitronyl carbon could facilitate the nucleophilic addition of a hydroxyl group onto the nitronyl carbon. At high nitrone concentrations, a second paramagnetic species, very likely formed by intermolecular nucleophilic addition of two nitrone molecules, was also observed but to a lesser extent. In addition, theoretical data confirmed that the intramolecular reaction is much more favored than the intermolecular one. These nitrones were also found to efficiently trap carbon-centered radicals, but complex spectra were observed due to the presence of oxazolidine-N-oxyl derivatives.  相似文献   
86.
87.
Several approaches for the enantiodivergent synthesis of P-chirogenic mono- and diphosphines are described, using ephedrine methodology and phosphine borane chemistry. Firstly, both enantiomers of a tertiary phosphine can be obtained starting from the same oxazaphospholidine borane complex, prepared from (+)-ephedrine, when changing the order of addition of the organolithium reagents during the synthetic pathway. The second approach is based on the chlorophosphine boranes, which react with an organolithium reagent, to afford the corresponding phosphines with inversion of configuration. In the case where the chlorophosphine borane reacts with the t-butyl lithium reagent, a metal-halogen exchange occurs to afford the corresponding phosphide borane with retention of the configuration. The reaction of the phosphide borane with an alkyl halide leads to the same phosphine, but with the opposite configuration. Another approach depends on the diastereoselective preparation of the starting oxazaphospholidine borane complex from (?)-ephedrine, which leads according the case, to either one or the other enantiomer of a phosphine. Finally, the synthesis of (R,R)- and (S,S)-1,2-bis(methylphenylphosphino)ethane is also demonstrated using both enantiomers of the P-chirogenic diphosphinite diborane, which simultaneously allows the introduction of alkyl- or aryl substituents on the phosphorus atoms. In summary, these approaches show the great efficiency of the “ephedrine methodology” for the enantiodivergent synthesis of P-chirogenic mono- and diphosphines, and bearing alkyl or aryl substituents.  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号