首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17296篇
  免费   2723篇
  国内免费   1943篇
化学   12611篇
晶体学   207篇
力学   1180篇
综合类   142篇
数学   2067篇
物理学   5755篇
  2024年   39篇
  2023年   329篇
  2022年   398篇
  2021年   530篇
  2020年   644篇
  2019年   675篇
  2018年   521篇
  2017年   537篇
  2016年   752篇
  2015年   772篇
  2014年   941篇
  2013年   1165篇
  2012年   1553篇
  2011年   1581篇
  2010年   1063篇
  2009年   946篇
  2008年   1100篇
  2007年   984篇
  2006年   986篇
  2005年   797篇
  2004年   607篇
  2003年   546篇
  2002年   548篇
  2001年   467篇
  2000年   350篇
  1999年   364篇
  1998年   288篇
  1997年   268篇
  1996年   298篇
  1995年   234篇
  1994年   205篇
  1993年   160篇
  1992年   169篇
  1991年   173篇
  1990年   128篇
  1989年   123篇
  1988年   81篇
  1987年   70篇
  1986年   80篇
  1985年   60篇
  1984年   54篇
  1983年   45篇
  1982年   32篇
  1981年   31篇
  1980年   29篇
  1978年   24篇
  1977年   25篇
  1976年   23篇
  1974年   20篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
961.
Phase‐change memory (PCM) is regarded as one of the most promising candidates for the next‐generation nonvolatile memory. Its storage medium, phase‐change material, has attracted continuous exploration. Along the traditional GeTe–Sb2Te3 tie line, the binary compound Sb2Te3 is a high‐speed phase‐change material matrix. However, the low crystallization temperature prevents its practical application in PCM. Here, Cr is doped into Sb2Te3, called Cr–Sb2Te3 (CST), to improve the thermal stability. We find that, with increase of the Cr concentration, grains are obviously refined. However, all the CST films exhibit a single hexagonal phase as Sb2Te3 without phase separation. Also, the Cr helps to inhibit oxidation of Sb atoms. For the selected film CST_10.5, the resistance ratio between amorphous and crystalline states is more than two orders of magnitude; the temperature for 10‐year data retention is 120.8 °C, which indicates better thermal stability than GST and pure Sb2Te3. PCM cells based on CST_10.5 present small threshold current/voltage (4 μA/0.67 V). In addition, the cell can be operated by a low SET/RESET voltage pulse (1.1 V/2.4 V) with 50 ns width. Thus, Cr–Sb2Te3 with suitable composition is a promising novel phase‐change material used for PCM with high speed and good thermal stability performances. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
962.
By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.  相似文献   
963.
Laser wakefield accelerators(LWFAs)are compact accelerators which can produce femtosecond high-energy electron beams on a much smaller scale than the conventional radiofrequency accelerators.It is attributed to their high acceleration gradient which is about 3 orders of magnitude larger than the traditional ones.The past decade has witnessed the major breakthroughs and progress in developing the laser wakfield accelerators.To achieve the LWFAs suitable for applications,more and more attention has been paid to optimize the LWFAs for high-quality electron beams.A single-staged LWFA does not favor generating controllable electron beams beyond 1 Ge V since electron injection and acceleration are coupled and cannot be independently controlled.Staged LWFAs provide a promising route to overcome this disadvantage by decoupling injection from acceleration and thus the electron-beam quality as well as the stability can be greatly improved.This paper provides an overview of the physical conceptions of the LWFA,as well as the major breakthroughs and progress in developing LWFAs from single-stage to two-stage LWFAs.  相似文献   
964.
The mass spectrometric (MS) analysis of flavone di‐C‐glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di‐C‐glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography‐electrospray ionization‐tandem ion trap mass spectrometry (HPLC‐ESI‐IT‐MSn) in the negative ion mode to analyze their fragmentation patterns. A new MS2 and MS3 hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C‐6 and C‐8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS2 and MS3 structure‐diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C‐6 and C‐8. The base peak (0,2X10,2X2? ion) in MS3 spectra of di‐C‐glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di‐C‐glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono‐C‐hexoside, 2 flavone 6,8‐di‐C‐hexosides, 11 flavone 6,8‐di‐C‐pentosides, 13 flavone 6,8‐C‐hexosyl‐C‐pentosides, 5 acetylated flavone C‐glycosides and 3 flavonol O‐glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MSn (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C‐glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
965.
Comparing with the traditional concentric rotation method (rotation radius is 0 cm), the effects of different rotation radii on the growth rate of KDP crystals were studied by experimental methods. It was found that with the increase of rotation radius from 0 cm, the growth rate of each direction of crystals first increased and then decreased in a size‐unchanged vessel. The smaller the distance between the crystal and vessel wall, the less the growth rate. This phenomenon was named the “wall collision effect”. Also, the value of growth rate reached a maximum when the rotation radius was about half of its allowable largest value in the size‐unchanged vessel. In addition, an increase of the rotation radius could improve the crystal growth rate under the same linear velocity of crystal movement. Finally, the uniformity of crystal growth has also been analyzed compared with the concentric rotation radius. It was found that the uniformity of crystal growth was best when the rotation radius was half of its allowable maximum value, and it was more conducive to the actual application of KDP crystals.  相似文献   
966.
The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.  相似文献   
967.
Aromatic amine curing agent with flexible unit in backbone, 1,4-bis (4-diaminobenzene-1-oxygen) n-butane (DDBE), was synthesized, and the structure was confirmed by FT-IR and 1H NMR. The curing kinetics of tetraglycidyl methylene dianiline (TGDDM, or AG80) using DDBE and 4,4′-bis-(diaminodiphenyl) methane (DDM) as curing agents, respectively, were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TG, respectively. The results showed that the activation energy of AG80/DDBE system was slightly higher than that of AG80/DDM system. ?esták-Berggren model can generally simulate well the reaction rates of these two systems. DMTA measurements showed that the storage modulus of cured AG80/DDBE is similar to that of cured AG80/DDM at the temperature below glass transition temperature (T g) and lower than that of cured AG80/DDM at the temperature above glass transition temperature, while T g of cured AG80/DDBE is lower than that of cured AG80/DDM. TG showed that the thermal stabilities of these two cured systems are similar.  相似文献   
968.
Streptothricin‐F (STT‐F), one of the early‐discovered antibiotics, consists of three components, a β‐lysine homopolymer, an aminosugar D ‐gulosamine, and an unusual bicyclic streptolidine. The biosynthesis of streptolidine is a long‐lasting but unresolved puzzle. Herein, a combination of genetic/biochemical/structural approaches was used to unravel this problem. The STT gene cluster was first sequenced from a Streptomyces variant BCRC 12163, wherein two gene products OrfP and OrfR were characterized in vitro to be a dihydroxylase and a cyclase, respectively. Thirteen high‐resolution crystal structures for both enzymes in different reaction intermediate states were snapshotted to help elucidate their catalytic mechanisms. OrfP catalyzes an FeII‐dependent double hydroxylation reaction converting L ‐Arg into (3R,4R)‐(OH)2‐L ‐Arg via (3S)‐OH‐L ‐Arg, while OrfR catalyzes an unusual PLP‐dependent elimination/addition reaction cyclizing (3R,4R)‐(OH)2‐L ‐Arg to the six‐membered (4R)‐OH‐capreomycidine. The biosynthetic mystery finally comes to light as the latter product was incorporation into STT‐F by a feeding experiment.  相似文献   
969.
Recycling spent Zn–Mn batteries by synthesizing the products with high added value is very active internationally. In this work, we have successfully synthesized the spinel LiMn2O4 cathode materials for rechargeable lithium-ion batteries by simple sol–gel method using the manganese source that is recovered from spent Zn–Mn batteries through hydrometallurgy recycling technology. The influence of sintering temperature on the structure, the morphological properties, and the electrochemical properties of the product is investigated. The results show that spinel LiMn2O4 prepared at 700 °C has the best comprehensive performance. Moreover, the electrochemical performance of spinel LiMn2O4 has been further optimized by Co-ion doping.  相似文献   
970.
The synthesis, X‐ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ3‐ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au6(P?P)n(Fc‐CH2‐P)2][PF6]2 (n=3, P?P=dppm (bis(diphenylphosphino)methane) ( 1 ), dppe (1,2‐bis(diphenylphosphino)ethane) ( 2 ), dppp (1,3‐bis(diphenylphosphino)propane) ( 3 ), Ph2PN(C3H7)‐PPh2 ( 4 ), Ph2PN(Ph‐CH3p)PPh2 ( 5 ), dppf (1,1′‐bis(diphenylphosphino)ferrocene) ( 6 ); n=2, P?P=dpepp (bis(2‐diphenylphosphinoethyl)phenylphosphine) ( 7 )), as platforms for multiple redox‐active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ3‐ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au6P2 cluster core, providing an understanding of the electronic properties of the hexanuclear AuI cluster linkage. The present complexes also serve as an ideal system for the design of multi‐electron reservoir and molecular battery systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号