首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32129篇
  免费   5358篇
  国内免费   3701篇
化学   21996篇
晶体学   363篇
力学   2329篇
综合类   300篇
数学   3561篇
物理学   12639篇
  2024年   103篇
  2023年   655篇
  2022年   1145篇
  2021年   1283篇
  2020年   1298篇
  2019年   1272篇
  2018年   1086篇
  2017年   955篇
  2016年   1539篇
  2015年   1567篇
  2014年   1825篇
  2013年   2320篇
  2012年   2798篇
  2011年   2929篇
  2010年   2014篇
  2009年   1882篇
  2008年   1904篇
  2007年   1745篇
  2006年   1731篇
  2005年   1461篇
  2004年   1169篇
  2003年   907篇
  2002年   868篇
  2001年   730篇
  2000年   652篇
  1999年   635篇
  1998年   548篇
  1997年   521篇
  1996年   507篇
  1995年   474篇
  1994年   429篇
  1993年   323篇
  1992年   335篇
  1991年   282篇
  1990年   256篇
  1989年   219篇
  1988年   143篇
  1987年   118篇
  1986年   118篇
  1985年   107篇
  1984年   60篇
  1983年   57篇
  1982年   49篇
  1981年   28篇
  1980年   23篇
  1979年   10篇
  1975年   13篇
  1972年   8篇
  1965年   7篇
  1957年   10篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
An ammonium‐containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two‐dimensional double‐layered framework constructed by [BiO2F5]6? and [BiO4F4]9? polyhedra, as well as [IO3]? groups, was successfully synthesized. The well‐ordered alignment of these SHG‐active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   
992.
The understanding of catalyst deactivation represents one of the major challenges for the methanol‐to‐hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π‐interactions in catalyst deactivation in the MTH reaction on zeolites H‐SSZ‐13 and H‐ZSM‐5. π‐interaction‐induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two‐dimensional solid‐state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   
993.
Tumor progressions such as metastasis are complicated events that involve abnormal expression of different miRNAs and enzymes. Monitoring these biomolecules in live cells with computational DNA nanotechnology may enable discrimination of tumor progression via digital outputs. Herein, we report intracellular entropy‐driven multivalent DNA circuits to implement multi‐bit computing for simultaneous analysis of intracellular telomerase and microRNAs including miR‐21 and miR‐31. These three biomolecules can trigger respective DNA strand displacement recycling reactions for signal amplification. They are visualized by fluorescence imaging, and their signal outputs are encoded as multi‐bit binary codes for different cell types. The results can discriminate non‐tumorigenic, malignant and metastatic breast cells as well as respective tumors. This DNA computing circuit is further performed in a microfluidic chip to differentiate rare co‐cultured cells, which holds a potential for the analysis of clinical samples.  相似文献   
994.
A facile photoetching approach is described that alleviates the negative effects from bulk defects by confining the oxygen vacancy (Ovac) at the surface of BiVO4 photoanode, by 10‐minute photoetching. This strategy could induce enriched Ovac at the surface of BiVO4, which avoids the formation of excessive bulk defects. A mechanism is proposed to explain the enhanced charge separation at the BiVO4 /electrolyte interface, which is supported by density functional theory (DFT) calculations. The optimized BiVO4 with enriched surface Ovac presents the highest photocurrent among undoped BiVO4 photoanodes. Upon loading FeOOH/NiOOH cocatalysts, photoetched BiVO4 photoanode reaches a considerable water oxidation photocurrent of 3.0 mA cm?2 at 0.6 V vs. reversible hydrogen electrode. An unbiased solar‐to‐hydrogen conversion efficiency of 3.5 % is realized by this BiVO4 photoanode and a Si photocathode under 1 sun illumination.  相似文献   
995.
A photoinduced SET process enables the direct B?H bond activation of NHC–boranes. In contrast to common hydrogen atom transfer (HAT) strategies, this photoinduced reaction simply takes advantage of the beneficial redox potentials of NHC–boranes, thus obviating the need for extra radical initiators. The resulting NHC–boryl radical was used for the borylation of a wide range of α‐trifluoromethylalkenes and alkenes with diverse electronic and structural features, providing facile access to highly functionalized borylated molecules. Labeling and photoquenching experiments provide insight into the mechanism of this photoinduced SET pathway.  相似文献   
996.
A new electrochemical sensor material has been fabricated via the non‐covalent functionalization of reduced graphene oxide (rGO) and soluble tetramino zincphthalocyanines (ZnPc‐NH2). Immobilization of uricase onto the synthesized nanohybrids can evidently improve the electrocatalytic activity and selectivity. The obtained composite membrane possesses a great enhancement of electron transfer rate and excellent synergistic electrocatalytic effect toward uric acid (UA) oxidation under the working potential at 0.620 V vs. Ag/AgCl with a scan rate of 0.125 V/s. The effects of the experimental parameters on the electrochemical oxidation responses of UA were investigated and optimized in detail. Under the optimized conditions, the peak currents were proportional to the UA concentration in a range from 0.5 to 100 μmol/L with detection limit of 0.15 μmol/L. Moreover, the developed sensor was applied for UA determination in human urine samples with high accuracy and satisfactory recovery, which is envisioned to have promising applications in monitoring UA in clinical research.  相似文献   
997.
Journal of Thermal Analysis and Calorimetry - The burning process and typical fire parameters of power-cable silicon ointment were explored experimentally using a cone calorimeter, and the effects...  相似文献   
998.
Astaxanthin is a natural lipid-soluble and red-orange carotenoid. Due to its strong antioxidant property, anti-inflammatory, anti-apoptotic, and immune modulation, astaxanthin has gained growing interest as a multi-target pharmacological agent against various diseases. In the current review, the anti-inflammation mechanisms of astaxanthin involved in targeting for inflammatory biomarkers and multiple signaling pathways, including PI3K/AKT, Nrf2, NF-κB, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3, have been described. Furthermore, the applications of anti-inflammatory effects of astaxanthin in neurological diseases, diabetes, gastrointestinal diseases, hepatic and renal diseases, eye and skin disorders, are highlighted. In addition to the protective effects of astaxanthin in various chronic and acute diseases, we also summarize recent advances for the inconsistent roles of astaxanthin in infectious diseases, and give our view that the exact function of astaxanthin in response to different pathogen infection and the potential protective effects of astaxanthin in viral infectious diseases should be important research directions in the future.  相似文献   
999.
Metal–organic frameworks (MOFs) are promising materials with fascinating properties. Their widespread applications are sometimes hindered by the intrinsic instability of frameworks. However, this instability of MOFs can also be exploited for useful purposes. Herein, we report the use of MOFs as metal ion precursors for constructing functional nanocomposites by utilizing the instability of MOFs. The heterogeneous growth process of nanostructures on substrates involves the release of metal ions, nucleation on substrates, and formation of a covering structure. Specifically, the synthesized CoS with carbon nanotubes as substrates display enhanced performance in a lithium‐ion battery. Such strategy not only presents a new way for exploiting the instability of MOFs but also supplies a prospect for designing versatile functional nanocomposites.  相似文献   
1000.
The electrocatalytic nitrogen reduction reaction (NRR) is an alternative eco‐friendly strategy for sustainable N2 fixation with renewable energy. However, NRR suffers from sluggish kinetics owing to difficult N2 adsorption and N≡N cleavage. Now, nanoporous palladium hydride is reported as electrocatalyst for electrochemical N2 reduction under ambient conditions, achieving a high ammonia yield rate of 20.4 μg h?1 mg?1 with a Faradaic efficiency of 43.6 % at low overpotential of 150 mV. Isotopic hydrogen labeling studies suggest the involvement of lattice hydrogen atoms in the hydride as active hydrogen source. In situ Raman analysis and density functional theory (DFT) calculations further reveal the reduction of energy barrier for the rate‐limiting *N2H formation step. The unique protonation mode of palladium hydride would provide a new insight on designing efficient and robust electrocatalysts for nitrogen fixation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号