首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   4篇
  国内免费   1篇
化学   36篇
力学   9篇
数学   21篇
物理学   71篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1931年   1篇
  1910年   3篇
  1909年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
91.
The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all‐optical laser‐driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump‐probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators.

  相似文献   

92.
There is a need to better understand particle size distributions (PSDs) from turbulent flames from a theoretical, practical and even regulatory perspective. Experiments were conducted on a sooting turbulent non-premixed swirled ethylene flame with secondary (dilution) air injection to investigate exhaust and in-burner PSDs measured with a Scanning Mobility Particle Sizer (SMPS) and soot volume fractions (fv) using extinction measurements. The focus was to understand the effect of systematically changing the amount and location of dilution air injection on the PSDs and fv inside the burner and at the exhaust. The PSDs were also compared with planar Laser Induced Incandescence (LII) calibrated against the average fv. LII provides some supplemental information on the relative soot amounts and spatial distribution among the various flow conditions that helps interpret the results. For the flame with no air dilution, fv drops gradually along the centreline of the burner towards the exhaust and the PSD shows a shift from larger particles to smaller. However, with dilution air fv reduces sharply where the dilution jets meet the burner axis. Downstream of the dilution jets fv reduces gradually and the PSDs remain unchanged until the exhaust. At the exhaust, the flame with no air dilution shows significantly more particles with an fv one to two orders of magnitude greater compared to the Cases with dilution. This dataset provides insights into soot spatial and particle size distributions within turbulent flames of relevance to gas turbine combustion with differing dilution parameters and the effect dilution has on the particle size. Additionally, this work measures fv using both ex situ and in situ techniques, and highlights the difficulties associated with comparing results across the two. The results are useful for validating advanced models for turbulent combustion.  相似文献   
93.
A group G is called a T-group if all its subnormal subgroups are normal, and G is a ${\bar{T}}$ -group if every subgroup of G has the property T. It is proved here that if G is a locally soluble group whose proper subgroups of infinite rank have the T-property, then either G is a ${\bar{T}}$ -group or it has finite rank.  相似文献   
94.
With a renormalization group approach, we study the pressure of the two dimensional Coulomb Gas along a small piece of the Kosterlitz-Thouless transition line, i.e. the boundary of the dipole region in the activity-temperature phase-space.  相似文献   
95.
An advanced hybrid lumped parameter code for the simulation of Pulsating Heat Pipes is developed. Being able to simulate transient operative conditions and removing common physical simplified assumptions, it represents a step forward with respect to the present models of passive two‐phase systems. Mass, momentum and energy balances account for the thermal and fluid‐dynamics phenomena. Heterogeneous and homogeneous phase changes are directly integrated. In addition, a fitting correlation for the wall/vapour heat transfer coefficient is implemented and tuned against experimental data in order to evaluate the influence of the liquid film on conjugate heat transfer. The resulting numerical tool have been validated against experimental data achieved testing a copper pulsating heat pipe during the 58th ESA Parabolic Flight Campaign in several operative conditions and transient gravity levels. The predicted results show very good matching with the actual thermo‐physical behaviour of the system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
96.
The objective of this paper is to better describe the structure of the hydrothermal carbon (HTC) process and put it in relationship with the more classical pyrolytic carbons. Indeed, despite the low energetic impact and the number of applications described so far for HTC, very little is known about the structure, reaction mechanism, and the way these materials relate to coals. Are HTC and calcination processes equivalent? Are the structures of the processed materials related to each other in any way? Which is the extent of polyaromatic hydrocarbons (PAH) inside HTC? In this work, the effect of hydrothermal treatment and pyrolysis are compared on glucose, a good model carbohydrate; a detailed single-quantum double-quantum (SQ-DQ) solid state (13)C NMR study of the HTC and calcined HTC is used to interpret the spectral region corresponding to the signal of furanic and arene groups. These data are compared to the spectroscopic signatures of calcined glucose, starch, and xylose. A semiquantitative analysis of the (13)C NMR spectra provides an estimation of the furanic-to-arene ratio which varies from 1:1 to 4:1 according to the processing conditions and carbohydrate employed. In addition, we formulate some hypothesis, validated by DFT (density functional theory) modeling associated with (13)C NMR chemical shifts calculations, about the possible furan-rich structural intermediates that occur in the coalification process leading to condensed polyaromatic structures. In combination with a broad parallel study on the HTC processing conditions effect on glucose, cellulose, and raw biomass (Falco, C.; Baccile, N.; Titirici, M.-M. Green Chem., 2011, DOI: 10.1039/C1GC15742F), we propose a broad reaction scheme and in which we show that, through HTC, it is possible to tune the furan-to-arene ratio composing the aromatic core of the produced HTC carbons, which is not possible if calcination is used alone, in the temperature range below 350 °C.  相似文献   
97.
We compare the results of small angle neutron scattering on the flux line lattice (FLL) obtained in the borocarbide superconductor LuNi2B2C with the applied field along the c- and a-axes. For H‖c the temperature dependence of the FLL structural phase transition from square to hexagonal symmetry was investigated. Above 10 K the transition onset field. H 2(T), rises sharply, bending away from H c2(T) in contradiction to theoretical predictions of the two merging. For H‖a a first order FLL reorientation transition is observed at H tr=3–3.5 kOe. Below H tr the FLL nearest neighbor direction is parallel to the b-axis, and above H tr to the c-axis. This transition cannot be explained using nonlocal corrections to the London model.  相似文献   
98.
It is proved that if \(G\) is a (generalized) soluble group of infinite rank in which all proper subgroups of infinite rank are permodular, then the subgroup lattice of \(G\) is permodular. As a consequence of this theorem, we obtain shorter proofs for corresponding known results concerning normal or permutable subgroups of groups of infinite rank.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号