首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   5篇
化学   37篇
晶体学   1篇
力学   1篇
数学   5篇
物理学   10篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2013年   11篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  1999年   2篇
  1994年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
51.
The actual surface area of a gold-coated conductive layer over the laser nano-textured surface of sapphire is determined using an electrochemical cyclic voltammetry. The method is down scaled to measure the sensing surface area of 200 × 200 μm2 on a laser-ablated ripple sensor used for surface-enhanced Raman spectroscopy/scattering (SERS). Ripple SERS sensors made on different substrates of high refractive index materials such as GaP, diamond, SiC, and Al2O3 make a versatile sensing platform with the detection of analyte (here a thiophenol) down to 10 nM concentrations. Direct measurement of the surface area provides a powerful tool to investigate roughness, porosity, and morphology of coatings used for SERS or other light harvesting surfaces such as solar cells. Novelty of the proposed method is in the use of cathodic peak of surface passivation–activation cycle for calculation of surface charge. The method enables high-accuracy surface area measurements from as small as 0.01 mm2 pads up to functional solar cells.  相似文献   
52.
The effects of CuCl2 and ZnCl2 on the viscosity in aqueous ethanol mixtures (10%–50% v/v) were studied in the concentration range 1.0×10−2–8.0×10−2 mol·dm−3 at different temperatures. It was found that the viscosities increased with an increase in the concentration of the salts and percent composition of ethanol content, whereas it decreased with an increase in temperature. Ion-ion and ion-solvent interactions are determined with the help of A- and B-coefficients of Jones-Dole equation. The values of A- and B-coefficients are irregular and increase with a rise in temperature and also with an increase in ethanol contents for both salts. Negative values of B-coefficients show that ion solvent interactions is comparatively small and suggest that CuCl2 and ZnCl2 behave as structure breakers in aqueous ethanol mixtures. Thermodynamic parameters like the energy of activation (E η ) and change in entropy of activation (ΔS*) were also evaluated which confirm the structure breaker behavior of salts in aqueous ethanol mixtures.  相似文献   
53.
The reaction between the thionine (Th) and the ribose was observed spectrophotometrically and changes in absorbance of Th were recorded at variable concentration of dye, reductant and pH. A pseudo first order rate of reaction was found to establish the reduction kinetics of the dye, studied at a pH range of 0.34 to 12.8. Absorption spectrum of Th at different pH, with ribose showed a pH (12.8) dependent introversion. The reduction most probably took place with enediol intermediate of the sugar at high pH. A full geometry optimization of predominant species of Th namely, mono‐deprotonated, di‐deprotonated Th, and LTh (leuco thionine) respectively, at low and high pH, was performed at B3LYP level of theory. The data obtained from the energy minimization were in excellent agreement with other experimental and theoretical observations. The calculated enthalpies of formation for both reduction reactions (mono‐deprotonated Th+H+→leucothionine and di‐deprotonated Th+2H+→leucothionine) provided evidences for maximum reduction of the dye at high pH.  相似文献   
54.
The practicality of the electrochemical CO2 reduction technique depends on the development of cost-effective, robust, and highly selective catalysts. To achieve this goal, we have engineered self-supported 3D electrodes composed of Pd-Zn nanosheets (NSs) for CO2 electrochemical reduction to CO with minimal Pd content. This innovative electrode with an increased surface area was created using an electrodeposition method employing a dynamic hydrogen bubble template. By precisely adjusting the Pd content, we improved the thickness, porosity, and surface area of the electrodes, resulting in a CO2-to-CO selectivity reaching as high as 88.5 %, with an average of at least 80 % sustained over 10 hours. This remarkable improved activity can be attributed to the synergistic effects of an appropriate Pd/Zn atomic ratio as well as to the large surface area of nanosheets structures with rich edge active sites. Furthermore, to get around the limitations of CO2 mass transfer, reactions were done at high pressures conditions ranging from 3 to 9.5 bar; this strategic approach yielded an outstanding partial current density of −304.6 mA cm−2 for CO. These noteworthy findings establish concepts for constructing effective and earth-abundant CO-producing electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号